如圖,在梯形ABCD中,已知AD∥BC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
(1)求證:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度數(shù)
(1)證明見解析;(2)100°.

試題分析:(1)先根據(jù)題意得出∠ABE=∠CDA,然后結(jié)合題意條件利用SAS可判斷三角形的全等;
(2)根據(jù)題意可分別求出∠AEC及∠ACE的度數(shù),在△AEC中利用三角形的內(nèi)角和定理即可得出答案.
(1)證明:在梯形ABCD中,∵AD∥BC,AB=CD,
∴∠ABE=∠BAD,∠BAD=∠CDA,
∴∠ABE=∠CDA
在△ABE和△CDA中,
,
∴△ABE≌△CDA.
(2)解:由(1)得:∠AEB=∠CAD,AE=AC,
∴∠AEB=∠ACE,
∵∠DAC=40°,
∴∠AEB=∠ACE=40°,
∴∠EAC=180°-40°-40°=100°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AD、BC相交于O,OA=OC,∠OBD=∠ODB. 求證:AB=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正方形ABCD中,AB=5,P是BC邊上任意一點(diǎn),E是BC延長
線上一點(diǎn),連接AP,作PF⊥AP,使PF=PA,連接CF,AF,AF交CD邊于點(diǎn)G,連接PG.
(1)求證:∠GCF=∠FCE;
(2)判斷線段PG,PB與DG之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)若BP=2,在直線AB上是否存在一點(diǎn)M,使四邊形DMPF是平行四邊形,若存在,求出BM的長度,若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)如圖所示,已知點(diǎn)D為等腰直角△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長線上的一點(diǎn),且CE=CA.
(1)求證:DE平分∠BDC;
(2)若點(diǎn)M在DE上,且DC=DM,求證: ME=BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD中,∠A=∠C=900,平分∠A BC交CD于E,DF平分∠A DC交AB于F
(1)若∠ABC=600,則∠ADC=       °, ∠ADF=       °;
(2)BE與DF平行嗎?試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在□ABCD中,E、F為對角線BD上的兩點(diǎn),且BE=DF.求證:∠BAE=∠DCF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方形ABCD的邊長為4,點(diǎn)E在BC上,四邊形EFGB也是正方形,以B為圓心,BA長為半徑畫圓,連結(jié)AF,CF,則圖中陰影部分面積為      .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形ABCD中,點(diǎn)E在邊AB上,將矩形ABCD沿直線DE折疊,點(diǎn)A恰好落在邊BC的點(diǎn)F處.若AE=5,BF=3,則CD的長是( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在Rt△ABC中,∠C=90°,AC=9,BC=12,則點(diǎn)C到AB的距離是(  )。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案