【題目】將拋物線y=2x2向右平移3個單位,再向下平移5個單位,得到的拋物線的表達式為(
A.y=2(x﹣3)2﹣5
B.y=2(x+3)2+5
C.y=2(x﹣3)2+5
D.y=2(x+3)2﹣5

【答案】A
【解析】解:拋物線y=2x2的頂點坐標(biāo)為(0,0),點(0,0)向右平移3個單位,再向下平移5個單位所得對應(yīng)點的坐標(biāo)為(3,﹣5),所以平移得到的拋物線的表達式為y=2(x﹣3)2﹣5. 故選A.
【考點精析】解答此題的關(guān)鍵在于理解二次函數(shù)圖象的平移的相關(guān)知識,掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l過正方形ABCD的頂點B,點A、C至直線l的距離分別為2和3,則此正方形的面積為(
A.5
B.6
C.9
D.13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面坐標(biāo)系中,正方形ABCD的位置如圖所示,點A的坐標(biāo)為(1,0),點D的坐標(biāo)為(0,2),延長CBx軸于點A1,作正方形A1B1C1C,延長C1B1x軸于點A2,作正方形A2B2C2C1,………按這樣的規(guī)律進行下去,第2012個正方形的面積為_____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請閱讀下列材料:問題:現(xiàn)有5個邊長為1的正方形,排列形式如圖甲,請把它們分割后拼接成一個新的正方形.要求:畫出分割線并在正方形網(wǎng)格圖(圖中的每一個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長為x(x>0),依題意,割補前后圖形的面積相等,有x2=5,解得x= 由此可知新正方形的邊長等于兩個小正方形組成的矩形對角線的長.于是,畫出如圖乙所示的分割線,拼出如圖丙所示的新的正方形.
請你參考小東同學(xué)的做法,解決如下問題:
現(xiàn)有10個邊長為1的小正方形,排列形式如圖丁,請把它們分割后拼接成一個新的正方形.要求:在圖丁中畫出分割線,并在圖戊的正方形網(wǎng)格圖(圖中的每一個小正方形的邊長均為1)中用實線畫出拼接成的新正方形.
說明:直接畫出圖形,不要求寫分析過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中,點在邊上, , ,垂足分別是、,12.

1平行嗎?為什么?

(2)若∠51°,54°的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】彭山的枇杷大又甜,在今年5月18日“彭山枇杷節(jié)”期間,從山上5棵枇杷樹上采摘到了200千克枇杷,請估計彭山近600棵枇杷樹今年一共收獲了枇杷千克.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,有題譯文如下:今有門,不知其高寬;有竿,不知其長短.橫放,竿比門寬長出4尺;豎放,竿比門高長出2尺;斜放,竿與門對角線長恰好相等.問門高、寬和對角線的長各是多少?設(shè)門對角線的長為x尺,下列方程符合題意的是(

A.(x2)2(x4)2x2B.(x2)2(x4)2x2

C.x2(x4)2(x4)2D.(x2)2x2(x4)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(l)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質(zhì)探宄:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關(guān)系.

猜想結(jié)論:(要求用文字語言敘述)

寫出證明過程(先畫出圖形,寫出已知、求證)

(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABE,FDE上,并且AF=CE

1)求證:四邊形ACEF是平行四邊形;

2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形?請回答并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案