【題目】感知:如圖①,△ABC是等腰直角三角形,∠ACB=90°,正方形CDEF的頂點D,F(xiàn)分別在邊AC,BC上,易證:AD=BF(不需要證明);
(1)探究:將圖①的正方形CDEF繞點C順時針旋轉(zhuǎn)α(0°<α<90°),連接AD,BF,其他條件不變,如圖②,求證:AD=BF;
(2)應(yīng)用:若α=45°,CD= ,BE=1,如圖③,則BF= .
【答案】
(1)
證明:如圖②,
∵四邊形CDEF為正方形,
∴CD=CF,
由旋轉(zhuǎn)得:∠ACD=∠BCF,
∵△ABC是等腰直角三角形,∠ACB=90°,
∴AC=BC,
∴△ADC≌△BFC,
∴AD=BF;
(2)
【解析】應(yīng)用:如圖③,∵四邊形CDEF為正方形,
∴∠EDC=90°,ED=DC,
∵DC= ,
∴EC= = =2,
∴BC=BE+EC=1+2=3,
∴AC=BC=3,
過D作DG⊥AC于G,
∵α=45°,
即∠ACD=45°,
∴△DCG是等腰直角三角形,
∴DG=CG=1,
∴AG=BC﹣CG=3﹣1=2,
由勾股定理得:AD= = = ,
同理得:△ADC≌△BFC,
∴BF=AD= .
【考點精析】通過靈活運用等腰直角三角形和勾股定理的概念,掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+mx+n與x軸交于A,B兩點,y與軸交于點C,拋物線的對稱軸交x軸于點D.已知A(﹣1,0),C(0,3)
(1)求拋物線的解析式;
(2)在拋物線的對稱軸上是否存在P點,使△PCD是以CD為腰的等腰三角形,如果存在,直接寫出點P的坐標,如果不存在,請說明理由;
(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,
①求直線BC 的解析式;
②當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求四邊形CDBF的最大面積及此時點E的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某拋物線的對稱軸為直線x=2,點E是該拋物線頂點,拋物線與y軸交于點C,過點C作CD∥x軸,與拋物線交于點B,與對稱軸交于點D,點A是對稱軸上一點,連結(jié)AC,AB,若△ABC是等邊三角形,則圖中陰影部分圖形的面積之和是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D、E分別為AB、AC上的點,∠BDE、∠CED的平分線分別交BC于點F、G,EG∥AB.若∠BGE=110°,則∠BDF的度數(shù)為___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點C為線段AB上一點,分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點F,
(1)如圖1,若∠ACD=60°,則∠AFB= ;如圖2,若∠ACD=90°,則∠AFB= ;如圖3,若∠ACD=120°,則∠AFB= ;
(2)如圖4,若∠ACD=α,則∠AFB= (用含α的式子表示);
(3)將圖4中的△ACD繞點C順時針旋轉(zhuǎn)任意角度(交點F至少在BD、AE中的一條線段上),變成如圖5所示的情形,若∠ACD=α,則∠AFB與α的有何數(shù)量關(guān)系?并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△AOB中,∠AOB=90°,OA=3,OB=4.將△AOB沿x軸依次以點A,B,O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn),分別得到圖②、圖③、…,則旋轉(zhuǎn)得到的圖⑩的直角頂點的坐標為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于下列各組條件,不能判定△≌△的一組是 ( )
A. ∠A=∠A′,∠B=∠B′,AB=A′B′
B. ∠A=∠A′,AB=A′B′,AC=A′C′
C. ∠A=∠A′,AB=A′B′,BC=B′C′
D. AB=A′B′,AC=A′C′,BC=B′C′
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com