【題目】若a<b,則下列各式中一定成立的是()
A.a+2>b+2
B.a-2>b-2
C.-2a>-2b
D. >
【答案】C
【解析】A、不等式的兩邊都加2,不等號(hào)的方向不變,A不符合題意;
B、不等式的兩邊都減2,不等號(hào)的方向不變,B不符合題意;
C、不等式的兩邊都乘以-2,不等號(hào)的方向改變,C符合題意;
D、不等式的兩邊都除以2,不等號(hào)的方向不變,D不符合題意;
所以答案是:C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解不等式的性質(zhì)(1:不等式的兩邊同時(shí)加上(或減去)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變 .2:不等式的兩邊同時(shí)乘以(或除以)同一個(gè) 正數(shù) ,不等號(hào)的方向 不變 .3:不等式的兩邊同時(shí)乘以(或除以)同一個(gè) 負(fù)數(shù) ,的方向 改變).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=15cm,點(diǎn)E在AD上,且AE=9cm,連接EC,將矩形ABCD沿直線BE翻折,點(diǎn)A恰好落在EC上的點(diǎn)A′處,則A′C=cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“*”是規(guī)定的一種運(yùn)算法則:a*b=a2﹣ab﹣3b.若(﹣2)*(﹣x)=7,那么x=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究:小明在求同一坐標(biāo)軸上兩點(diǎn)間的距離時(shí)發(fā)現(xiàn),對(duì)于平面直角坐標(biāo)系內(nèi)任意兩點(diǎn)P1(x1,y1),P2(x2,y2),可通過(guò)構(gòu)造直角三角形利用圖1得到結(jié)論:他還利用圖2證明了線段P1P2的中點(diǎn)P(x,y)P的坐標(biāo)公式:,.
(1)請(qǐng)你幫小明寫出中點(diǎn)坐標(biāo)公式的證明過(guò)程;
運(yùn)用:(2)①已知點(diǎn)M(2,﹣1),N(﹣3,5),則線段MN長(zhǎng)度為 ;
②直接寫出以點(diǎn)A(2,2),B(﹣2,0),C(3,﹣1),D為頂點(diǎn)的平行四邊形頂點(diǎn)D的坐標(biāo): ;
拓展:(3)如圖3,點(diǎn)P(2,n)在函數(shù)(x≥0)的圖象OL與x軸正半軸夾角的平分線上,請(qǐng)?jiān)贠L、x軸上分別找出點(diǎn)E、F,使△PEF的周長(zhǎng)最小,簡(jiǎn)要敘述作圖方法,并求出周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形三個(gè)內(nèi)角∠A、∠B、∠C,滿足關(guān)系式∠B+∠C=2∠A,則此三角形( )
A. 一定有一個(gè)內(nèi)角為45° B. 一定有一個(gè)內(nèi)角為60°
C. 一定是直角三角形 D. 一定是鈍角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,弦CD與直徑AB相交于點(diǎn)F.點(diǎn)E在⊙O外,做直線AE,且∠EAC=∠D.
(1)求證:直線AE是⊙O的切線.
(2)若∠BAC=30°,BC=4,cos∠BAD=,CF=,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過(guò)點(diǎn)A(2,-6),且與反比例函數(shù)y=-的圖象交于點(diǎn)B(a,4)
(1)求一次函數(shù)的解析式;
(2)將直線AB向上平移10個(gè)單位后得到直線l:y1=k1x+b1(k1≠0),l與反比例函數(shù)y2= 的圖象相交,求使y1<y2成立的x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com