(2006•舟山)如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(-1,0).
(1)求拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)C作x軸的平行線交拋物線的對(duì)稱軸于點(diǎn)P,你能判斷四邊形ABCP是什么四邊形?并證明你的結(jié)論;
(3)連接CA與拋物線的對(duì)稱軸交于點(diǎn)D,當(dāng)∠APD=∠ACP時(shí),求拋物線的解析式.

【答案】分析:(1)拋物線的對(duì)稱軸為x=-,由此可求出拋物線的對(duì)稱軸方程,由于A、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,因此可根據(jù)B點(diǎn)的坐標(biāo)求出A點(diǎn)的坐標(biāo).
(2)已知了CP∥AB,只需證CP是否與AB相等即可,根據(jù)拋物線對(duì)稱軸x=-2可知CP=2,根據(jù)A、B的坐標(biāo)不難得出AB=2,因此AB與PC平行且相等,四邊形ABCP是平行四邊形.
(3)本題的關(guān)鍵是求出C點(diǎn)的坐標(biāo),即OC的長(zhǎng),當(dāng)∠APD=∠ACP時(shí),△ADE∽△PAE,可得出AE2=DE•PE①,AE的長(zhǎng)可根據(jù)A點(diǎn)坐標(biāo)和拋物線的對(duì)稱軸方程求得,而關(guān)鍵是求出DE、PE的比例關(guān)系,由于PE=OC,在相似三角形ADE和ACO中,可求出DE與OC的比例關(guān)系,也就求出了DE與PE的比例關(guān)系,然后將這個(gè)式子代入①中即可求出OC的長(zhǎng),已知了A、B、C三點(diǎn)坐標(biāo)后可用待定系數(shù)法求出拋物線的解析式.
解答:解:(1)x=-=-2,
∴拋物線的對(duì)稱軸是直線x=-2
設(shè)點(diǎn)A的坐標(biāo)為(x,0),=-2,
∴x=-3,A的坐標(biāo)(-3,0)

(2)四邊形ABCP是平行四邊形
∵CP=2,AB=2,
∴CP=AB
又∵CP∥AB
∴四邊形ABCP是平行四邊形

(3)通過(guò)△ADE∽△CDP得出DE:PE=1:3
∵四邊形ABCP是平行四邊形
∴AB∥PC,
∴∠ACP=∠CAB,
∵∠APD=∠ACP,
∴∠APD=∠CAB,
∵∠AED是公共角,
∴△ADE∽△PAE,
∴12=•t
解得t=
將B(-1,0)代入拋物線y=ax2+4ax+t,
得t=3a,a=
拋物線的解析式為y=x2+x+
點(diǎn)評(píng):該題綜合性較強(qiáng),它將二次函數(shù)和相似三角形、平行四邊形貫穿在一起,考查綜合分析問(wèn)題能力,既考查二次函數(shù)的對(duì)稱軸解析式,又考查相似三角形的性質(zhì)和平行四邊形的識(shí)別,是一個(gè)考查學(xué)生綜合解題能力的好題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省舟山市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•舟山)如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(-1,0).
(1)求拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)C作x軸的平行線交拋物線的對(duì)稱軸于點(diǎn)P,你能判斷四邊形ABCP是什么四邊形?并證明你的結(jié)論;
(3)連接CA與拋物線的對(duì)稱軸交于點(diǎn)D,當(dāng)∠APD=∠ACP時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省臺(tái)州市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•舟山)如圖,已知拋物線y=ax2+4ax+t(a>0)交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)E,點(diǎn)B的坐標(biāo)為(-1,0).
(1)求拋物線的對(duì)稱軸及點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)C作x軸的平行線交拋物線的對(duì)稱軸于點(diǎn)P,你能判斷四邊形ABCP是什么四邊形?并證明你的結(jié)論;
(3)連接CA與拋物線的對(duì)稱軸交于點(diǎn)D,當(dāng)∠APD=∠ACP時(shí),求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《圖形認(rèn)識(shí)初步》(01)(解析版) 題型:選擇題

(2006•舟山)如圖,長(zhǎng)方體的面有( )

A.4個(gè)
B.5個(gè)
C.6個(gè)
D.7個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《平面直角坐標(biāo)系》(02)(解析版) 題型:解答題

(2006•舟山)如圖1,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,0),以O(shè)A為邊在第四象限內(nèi)作等邊△AOB,點(diǎn)C為x軸的正半軸上一動(dòng)點(diǎn)(OC>1),連接BC,以BC為邊在第四象限內(nèi)作等邊△CBD,直線DA交y軸于點(diǎn)E.
(1)試問(wèn)△OBC與△ABD全等嗎?并證明你的結(jié)論;
(2)隨著點(diǎn)C位置的變化,點(diǎn)E的位置是否會(huì)發(fā)生變化?若沒(méi)有變化,求出點(diǎn)E的坐標(biāo);若有變化,請(qǐng)說(shuō)明理由;
(3)如圖2,以O(shè)C為直徑作圓,與直線DE分別交于點(diǎn)F、G,設(shè)AC=m,AF=n,用含n的代數(shù)式表示m.

查看答案和解析>>

同步練習(xí)冊(cè)答案