【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為.動點(diǎn)P在拋物線上運(yùn)動(不與點(diǎn)A、B重合),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求b、c的值.
(2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.
(3)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間的拋物線上運(yùn)動時(shí),設(shè)正方形PQMN的周長為C,求C與m之間的函數(shù)關(guān)系式,并寫出C隨m增大而增大時(shí)m的取值范圍.
(4)當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.
【答案】(1), ;(2)m<﹣或0<m<3;(3)C=﹣2(m﹣)2+,﹣<m<且m≠0;(4)m<﹣.
【解析】試題分析:(1)先確定出點(diǎn)A,B的坐標(biāo),最后用待定系數(shù)法即可得出結(jié)論。
(2)點(diǎn)P在拋物線上,點(diǎn)Q在直線y=﹣x+3上,點(diǎn)N在直線AB上,設(shè)出點(diǎn)P的坐標(biāo),再表示出Q、N的坐標(biāo),即可得出PN=PQ,再用MN與y軸在PQ的同側(cè),建立不等式即可得出結(jié)論。
(3)點(diǎn)P在點(diǎn)A,B之間的拋物線上,根據(jù)(2)可知PQ的長,設(shè)正方形PQMN的周長為C,根據(jù)C=4PQ,建立C與m的函數(shù)關(guān)系式,求出其頂點(diǎn)坐標(biāo),根據(jù)二次函數(shù)的性質(zhì),即可求得結(jié)論。
(4)分兩種情況討論計(jì)算即可求出結(jié)論。
(1)解:∵直線y=﹣x+3與x軸相交于點(diǎn)A,
∴A(3,0),
∵點(diǎn)B在直線y=﹣x+3上,且B的橫坐標(biāo)為﹣ ,
∴B(﹣ , ),
∵A,B在拋物線上,
∴ ,
∴
(2)解:方法1、由(1)知,b= ,c= ,
∴拋物線的解析式為y=﹣ x2+ x+ ,
設(shè)P(m,﹣ m2+ m+ ),
∵點(diǎn)Q在直線y=﹣x+3上,
∴Q(m,﹣m+3),
∵點(diǎn)N在直線AB上,
∴N(( m2﹣ m﹣ ),(﹣ m2+ m+ )),
∴PN=| m2﹣ m﹣ ﹣m|=| m2﹣ m﹣ |
∴PQ=|﹣ m2+ m+ ﹣(﹣m+3)|=|﹣ m2+ m+ |,
∵四邊形PQMN時(shí)正方形,
∴PN=PQ,
∴| m2﹣ m﹣ |=|﹣ m2+ m+ |,此時(shí)等式恒成立,
當(dāng)m<0且m≠﹣ 時(shí),
∵M(jìn)N與y軸在PQ的同側(cè),
∴點(diǎn)N在點(diǎn)P右側(cè),
∴ m2﹣ m﹣ >m,
∴m<﹣ ,
當(dāng)m>0且m≠3時(shí),
∵M(jìn)N與y軸在PQ的同側(cè),
∴點(diǎn)P在點(diǎn)N的右側(cè),
∴ m2﹣ m﹣ <m,
∴﹣ <m<3,
∴0<m<3,
即:m的范圍為m<﹣ 或0<m<3;
方法2、如圖,
記直線AB與y軸的交點(diǎn)為D,
∵直線AB的解析式為y=﹣x+3,
∴D(0,3),
∴OD=3,
∵A(3,0),
∴OA=3,
∴OA=OB,
∴∠ODA=45°,
∵PQ∥y軸,
∴∠PQB=45°,
記:直線PN交直線AB于N',
∵四邊形PQMN是正方形,
∴∠QPN=90°,
∴∠PN'Q=45°=∠PQN',
∴PQ=PN',
∵四邊形PQMN是正方形,
∴PQ=PN,
點(diǎn)N在點(diǎn)P的左側(cè)時(shí),點(diǎn)N'都在直線AB上,
∵M(jìn)N與y軸在PQ的同側(cè),
∴m的范圍為m<﹣ 或0<m<3
(3)解:由(1)知,b= ,c= ,
∴拋物線的解析式為y=﹣ x2+ x+ ,
設(shè)P(m,﹣ m2+ m+ ),
∵點(diǎn)Q在直線y=﹣x+3上,
∴Q(m,﹣m+3),
∴PQ=|﹣ m2+ m+ ﹣(﹣m+3)|=|﹣ m2+ m+ |,
∵點(diǎn)P在點(diǎn)A,B之間的拋物線上,
∴PQ=﹣ m2+ m+ ,(﹣ <m<3且m≠0),
∵設(shè)正方形PQMN的周長為C,
∴C=4PQ=4(﹣ m2+ m+ )=﹣2m2+ m+2=﹣2(m﹣ )2+ ,
∵C隨m增大而增大,
∴m< ,
∴﹣ <m< 且m≠0
(4)解:當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),
∴m<0或0<m<3
當(dāng)0<m<3,PN>yP ,
由(2)知,P(m,﹣ m2+ m+ ),PQ=|﹣ m2+ m+ |=﹣ m2+ m+
∵四邊形PQMN是正方形,
∴PN=PQ=﹣ m2+ m+ >﹣ m2+ m+ ,
∴m>3,所以,此種情況不符合題意;
當(dāng)m<0時(shí),PN>yP ,
∵PQ= m2﹣ m﹣ ,
∵四邊形PQMN是正方形,
∴PN=PQ= m2﹣ m﹣ >﹣ m2+ m+ ,
∴m>3(舍)或m<﹣ ,
即:當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),m<﹣ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次軍事演習(xí)中,藍(lán)方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進(jìn)實(shí)施攔截,紅方行駛1000米到達(dá)C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進(jìn)了相同的距離,剛好在D處成功攔截藍(lán)方,求攔截點(diǎn)D處到公路的距離(結(jié)果不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=15,AC=12,BC=9,經(jīng)過點(diǎn)C且與邊AB相切的動圓與CB、CA分別相交于點(diǎn)E、F,則線段EF長度的最小值是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級舉行畢業(yè)典禮,需要從九年(1)班的2名男生1名女生(男生用A1表示,女生用B1表示)和九年(2)班的1名男生1名女生(男生用A2表示,女生用B2表示)共5人中隨機(jī)選出2名主持人.
(1)用樹狀圖或列表法列出所有可能情形;
(2)求2名主持人來自不同班級的概率;
(3)求2名主持人恰好1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為.動點(diǎn)P在拋物線上運(yùn)動(不與點(diǎn)A、B重合),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求b、c的值.
(2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.
(3)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間的拋物線上運(yùn)動時(shí),設(shè)正方形PQMN的周長為C,求C與m之間的函數(shù)關(guān)系式,并寫出C隨m增大而增大時(shí)m的取值范圍.
(4)當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),點(diǎn)A是函數(shù)(x<0)圖象上一點(diǎn),AO的延長線交函數(shù)(x>0,k<0)的圖象于點(diǎn)B,BC⊥x軸,若S△ABC=,求函數(shù)y2的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖拋物線y=ax2+2交x軸于點(diǎn)A(﹣2,0)、B,交y軸于點(diǎn)C;
(1)求拋物線的解析式;
(2)點(diǎn)P從點(diǎn)A出發(fā),以1個(gè)單位/秒的速度向終點(diǎn)B運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)C出發(fā),以相同的速度沿y軸正方向向上運(yùn)動,運(yùn)動的時(shí)間為t秒,當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),點(diǎn)Q也停止運(yùn)動,設(shè)△PQC的面積為S,求S與t間的函數(shù)關(guān)系式并直接寫出t的取值范圍;
(3)在(2)的條件下,當(dāng)點(diǎn)P在線段OB上時(shí),設(shè)PQ交直線AC于點(diǎn)G,過P作PE⊥AC于點(diǎn)E,求EG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B(6,0)的直線AB與直線OA相交于點(diǎn)A(4,2),動點(diǎn)M在線段OA和射線AC上運(yùn)動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)是否存在點(diǎn)M,使△OMC的面積是△OAC的面積的?若存在求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將兩塊直角三角形的一條直角邊重合疊放,已知AC=BC=+1,∠D=60°,則兩條斜邊的交點(diǎn)E到直角邊BC的距離是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com