如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點c.

【小題1】(1)求A、B、C三點的坐標.
【小題2】(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積.
【小題3】 (3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似.若存在,請求出M點的坐標;否則,請說明理由。


【小題1】解:(1)令y=0,得x2-1="0 " 解得x=±1
令x=0,得y=-1
∴A(-1,0)  B(1,0)  C(0,-1)
【小題2】(2)∵OA="OB=OC=1 " ∴∠BAC=∠ACO=∠BCO=45°
∵AP∥CB,∴∠PAB=45°
過點P作PE⊥x軸于E,則△APE為等腰直角三角形
令OE=a,則PE="a+1 " ∴P(a,a+1)
∵點P在拋物線y=x2-1上 ∴a+1=a##2-1
解得a1=2,a2=-1(不合題意,舍去)
∴PE=3
∴四邊形ACBP的面積S=AB·OC+AB·PE=×2×1+×2×3=4
【小題3】(3)假設存在                        
∵∠PAB=∠BAC=45° ∴PA⊥AC
∵MG⊥x軸于點G,∴∠MGA=∠PAC=90°
在Rt△AOC中,OA="OC=1 " ∴AC=
在Rt△PAE中,AE="PE=3 " ∴AP=
設M點的橫坐標為m,則M(m,m2-1)
①點M在y軸左側時,則m<-1
(i)當△AMG∽△PCA時,有
∵AG=-m-1,MG=m2-1
  解得m1=-1(舍去)  m2=(舍去)
(ii)當△MAG∽△PCA時有
  解得:m=-1(舍去)  m2=-2
∴M(-2,3)
②點M在y軸右側時,則m>1          
(i)當△AMG∽△PCA時有
∵AG=m+1,MG=m2-1
∴   解得m1=-1(舍去)  m2= ∴
(ii)當△MAG∽△PCA時有

解得:m1=-1(舍去)  m2="4 " ∴M(4,15)
∴存在點M,使以A、M、G三點為頂點的三角形與△PCA相似
M點的坐標為(-2,3),(,),(4,15)

解析

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,已知拋物線y=x2-1與x軸交于A、B兩點,與y軸交于點C.
(1)求A、B、C三點的坐標;
(2)過點A作AP∥CB交拋物線于點P,求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在一點M,過M作MG⊥x軸于點G,使以A、M、G三點為頂點的三角形與△PCA相似?若存在,請求出M點的坐標;否則,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知拋物線y=x2-4x+3與x軸交于A,B兩點,C為拋物線的頂點,過點A作AP∥精英家教網BC交拋物線于點P.
(1)求A,B,C三點坐標;
(2)求四邊形ACBP的面積;
(3)在x軸上方的拋物線上是否存在點M,過點M作ME⊥x軸于點E,使A,M,E三點為頂點的三角形與△PCA相似?若存在,請求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,已知拋物線y=ax2+bx+c(a≠0)經過原點和點(-2,0),則2a-3b
 
0.(>、<或=)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖所示,已知拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0),拋物線的對稱軸x=2交x軸于點E.
(1)求交點A的坐標及拋物線的函數(shù)關系式;
(2)在平面直角坐標系xOy中是否存在點P,使點P與A,B,C三點構成一個平行四邊形?若存在,請直接寫出點P坐標;若不存在,請說明理由;
(3)連接CB交拋物線對稱軸于點D,在拋物線上是否存在一點Q,使得直線CQ把四邊形DEOC分成面積比為1:7的兩部分?若存在,請求出點Q坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•衡陽)如圖所示,已知拋物線的頂點為坐標原點O,矩形ABCD的頂點A,D在拋物線上,且AD平行x軸,交y軸于點F,AB的中點E在x軸上,B點的坐標為(2,1),點P(a,b)在拋物線上運動.(點P異于點O)
(1)求此拋物線的解析式.
(2)過點P作CB所在直線的垂線,垂足為點R,
①求證:PF=PR;
②是否存在點P,使得△PFR為等邊三角形?若存在,求出點P的坐標;若不存在,請說明理由;
③延長PF交拋物線于另一點Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

同步練習冊答案