如圖,矩形ABOD的頂點A是函數(shù)y=與函數(shù)y=-x-(k+1)在第二象限的交點,AB⊥x軸于B,AD⊥y軸于D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式.
(2)求兩函數(shù)的交點A、C的坐標(biāo).
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).

【答案】分析:(1)根據(jù)反比例函數(shù)系數(shù)k的幾何意義和矩形ABOD的面積為3求出k的值;
(2)將兩函數(shù)解析式組成方程組,求出其解,即得交點A、C的坐標(biāo);
(3)設(shè)直線y=-x+2與y軸的交點坐標(biāo)為M(0,2),根據(jù)S△ABC=5,求出|PM|的值即可求出m的值.
解答:解:(1)設(shè)點A的坐標(biāo)為(x,y),
∵點A在第二象限,
∴x<0,y>0,
∵S矩形ABOD=|AB|•|AD|=|x|•|y|=3,
∴-xy=3,
又∵y=
∴xy=k,
∴k=-3.
∴反比例函數(shù)的解析式為y=-,一次函數(shù)的解析式為y=-x+2.

(2)由
解得,
∴點A、C的坐標(biāo)分別為(-1,3),(3,-1).

(3)設(shè)點P的坐標(biāo)為(0,m),
直線y=-x+2與y軸的交點坐標(biāo)為M(0,2),
∵S△APC=S△AMP+S△CMP=|PM|(|x1|+|x2|)=5.
∴|PM|=,即|m-2|=
∴m=或m=-,
∴點P的坐標(biāo)為(0,)或(0,-).
點評:此題考查了反比例函數(shù)的幾何意義及函數(shù)圖象交點和方程組的解關(guān)系,求出各交點坐標(biāo)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,矩形ABOD的頂點A是函數(shù)y=
kx
與函數(shù)y=-x-(k+1)在第二象限的交點,AB⊥x軸于B,AD⊥y軸于D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式.
(2)求兩函數(shù)的交點A、C的坐標(biāo).
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,矩形ABOD的頂點A是函數(shù)y1=
kx
與函數(shù)y2=-x-(k+1)的圖象在第二象限內(nèi)的交點,AB⊥x軸于點B,AD⊥y軸于點D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式以及兩交點A,C的坐標(biāo);
(2)直接寫出當(dāng)y1>y2時x的取值范圍;
(3)若點P是y軸上一點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形ABOD的頂點A是函數(shù)y=數(shù)學(xué)公式與函數(shù)y=-x-(k+1)在第二象限的交點,AB⊥x軸于B,AD⊥y軸于D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式.
(2)求兩函數(shù)的交點A、C的坐標(biāo).
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河南省中考數(shù)學(xué)預(yù)測試卷(五)(解析版) 題型:解答題

如圖,矩形ABOD的頂點A是函數(shù)與函數(shù)y2=-x-(k+1)的圖象在第二象限內(nèi)的交點,AB⊥x軸于點B,AD⊥y軸于點D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式以及兩交點A,C的坐標(biāo);
(2)直接寫出當(dāng)y1>y2時x的取值范圍;
(3)若點P是y軸上一點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年5月中考數(shù)學(xué)模擬試卷(57)(解析版) 題型:解答題

如圖,矩形ABOD的頂點A是函數(shù)y=與函數(shù)y=-x-(k+1)在第二象限的交點,AB⊥x軸于B,AD⊥y軸于D,且矩形ABOD的面積為3.
(1)求兩函數(shù)的解析式.
(2)求兩函數(shù)的交點A、C的坐標(biāo).
(3)若點P是y軸上一動點,且S△APC=5,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案