【題目】如圖,已知直線y=kx+6與拋物線y=ax2+bx+c相交于A,B兩點,且點A(1,4)為拋物線的頂點,點B在x軸上.
(1)求拋物線的解析式;
(2)在(1)中拋物線的第三象限圖象上是否存在一點P,使△POB與△POC全等?若存在,求出點P的坐標;若不存在,請說明理由;
(3)若點Q是y軸上一點,且△ABQ為直角三角形,求點Q的坐標.
【答案】(1)y=﹣(x﹣1)2+4=﹣x2+2x+3
(2)存在.P(,).
(3)Q點坐標為(0,)或(0,-)或(0,1)或(0,3).
【解析】
試題分析:(1)由待定系數(shù)法確定函數(shù)解析式;
(2)先確定出點C坐標,再由△POB≌△POC建立方程,求解即可,
(3)分三種情況計算,分別判斷△DAQ1∽△DOB,△BOQ2∽△DOB,△BOQ3∽△Q3EA,列出比例式建立方程求解即可.
試題解析:(1)把A(1,4)代入y=kx+6,
∴k=﹣2,
∴y=﹣2x+6,
由y=﹣2x+6=0,得x=3
∴B(3,0).
∵A為頂點
∴設拋物線的解析為y=a(x﹣1)2+4,
∴a=﹣1,
∴y=﹣(x﹣1)2+4=﹣x2+2x+3
(2)存在.
當x=0時y=﹣x2+2x+3=3,
∴C(0,3)
∵OB=OC=3,OP=OP,
∴當∠POB=∠POC時,△POB≌△POC,
作PM⊥x軸于M,作PN⊥y軸于N,
∴∠POM=∠PON=45°.
∴PM=PN
∴設P(m,m),則m=﹣m2+2m+3,
∴m=,
∵點P在第三象限,
∴P(,).
(3)①如圖,當∠Q1AB=90°時,作AE⊥y軸于E,
∴E(0,4)
∵∠DA Q1=∠DOB=90°,∠AD Q1=∠BDO
∴△DAQ1∽△DOB,
∴,
∴DQ1=,
∴OQ1=,
∴Q1(0,);
②如圖,
當∠Q2BA=90°時,∠DBO+∠OBQ2=∠OBQ2+∠O Q2B=90°
∴∠DBO=∠O Q2B
∵∠DOB=∠B O Q2=90°
∴△BOQ2∽△DOB,
∴,
∴,
∴OQ2=,
∴Q2(0,-);
③如圖,當∠AQ3B=90°時,∠AEQ3=∠BOQ3=90°,
∴∠AQ3E+∠E AQ3=∠AQ3E+∠B Q3O=90°
∴∠E AQ3=∠B Q3O
∴△BOQ3∽△Q3EA,
∴,,
∴OQ32﹣4OQ3+3=0,
∴OQ3=1或3,
∴Q3(0,1)或(0,3).
綜上,Q點坐標為(0,)或(0,-)或(0,1)或(0,3).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M、N分別是正五邊形ABCDE的邊BC、CD上的點,且BM=CN,AM交BN于點P.
(1)求證:△ABM≌△BCN;
(2)求∠APN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,軸,軸,點在x軸上,A(1,2),B(-1,2),D(-3,0),E(-3,-2),G(3,-2)把一條長為2018個單位長度且沒有彈性的細線(線的粗細忽略不計)的一端固定在點A處,并按A-B-D-E-F-G-H-P-A…的規(guī)律緊繞在圖形“凸”的邊上,則細線另一端所在位置的點的坐標是()
A.(1,1)B.(1,2)
C.(1,2)D.(1,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,點M、N分別在AD、CD上,若∠MBN=45°,易證MN=AM+CN
⑴ 如圖2,在梯形ABCD中,BC∥AD,AB=BC=CD, 點M、N分別在AD、CD上,若∠MBN=∠ABC ,試探究線段MN、AM、CN有怎樣的數(shù)量關系?請寫出猜想,并給予證明.
⑵ 如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點M、N分別在DA、CD的延長線上,若∠MBN=∠ABC,試探究線段MN、AM、CN又有怎樣的數(shù)量關系?請直接寫出猜想,不需證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖,在直線MN上求作一點P,使點P到射線OA和OB的距離相等.(要求用尺規(guī)作圖,保留作圖痕跡,不必寫作法和證明過程)
(2)等腰三角形的兩邊長滿足|a-4|+(b-9)2=0.求這個等腰三角形的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點 A 是反比例函數(shù) y 在第一象限圖象上的一個動點,連接 OA,以OA 為長,OA為寬作矩形 AOCB,且點 C 在第四象限,隨著點 A 的運動,點 C 也隨之運動,但點 C 始終在反比例函數(shù) y 的圖象上,則 k 的值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A在第一象限,點C在第四象限且OC=5,點B在x軸的正半軸上且OB=6,∠OAB=90°且OA=AB.
(1)求點A和點B的坐標;
(2)點P是線段OB上的一個動點(點P不與點O,B重合),過點P的直線l與y軸平行,直線l交邊OA成邊AB于點Q,交邊OC或邊CB于點R,設點P的橫坐標為t,線段QR的長度為m,已知t=4時,直線l恰好過點C,當0<t<3時,求m關于t的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=kx2+(2k-1)x-1與x軸交點的橫坐標為x1,x2(x1<x2),則對于下列結(jié)論:(1) 當x= -2時,y=1;(2) 當x> x2時,y>0;(3)方程kx2+(2k-1)x-1=0有兩個不相等的實數(shù)根x1,x2;(4) x1<-1,x2>-1;(5) x2 -x1 = ,其中正確的結(jié)論有_______(只需填寫序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com