(2001•河南)如圖,銳角ABC中,以BC為直徑的半圓O分別交AB、AC于D、E兩點,且S△ADE:S四邊形BCED=1:2,則cos∠BAC的值是( )

A.
B.
C.
D.
【答案】分析:要求∠BAC的余弦值就要構建直角三角形找出相應的邊的比例關系,那么可連接CD,通過AD和AC的比例關系來求∠BAC的余弦值.AD,AC的比例關系可通過△ADE∽△ACB三來求解,這樣就不難求得其余弦值了.
解答:解:連接CD.
∵∠ADE=∠C,∠DAE=∠CAB,
∴△ADE∽△ACB.
∵S△ADE:S四邊形BCED=1:2,
∴S△ADE:S△ACB=1:3,
∴AD:AC=:3,
∴cos∠BAC=:3.
故選D.
點評:本題主要考查了相似三角形的判定以及圓周角定理,根據(jù)三角形相似,用面積比求出相關的線段比是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圖形的相似》(02)(解析版) 題型:解答題

(2001•河南)如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:解答題

(2001•河南)如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年全國中考數(shù)學試題匯編《一次函數(shù)》(02)(解析版) 題型:解答題

(2001•河南)如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2001年河南省中考數(shù)學試卷(解析版) 題型:解答題

(2001•河南)如圖,在直角坐標系中,以(a,0)為圓心的O′與x軸交于C、D兩點,與y軸交于A、B兩點,連接AC.
(1)點E在AB上,EA=EC,求證:AC2=AE•AB;
(2)在(1)的結論下,延長EC到F,連接FB,若FB=FE,試判斷FB與⊙O′的位置關系,并說明理由;
(3)如果a=2,⊙O′的半徑為4,求(2)中直線FB的解析式.

查看答案和解析>>

同步練習冊答案