【題目】如圖,RtABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CEDB,BEDC.

(1)求證:四邊形DBEC是菱形;

(2)若AD=3,DF=1,求四邊形DBEC面積.

【答案】(1)見解析;(2)4

【解析】分析:(1)根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得證;

(2)由三角形中位線定理和勾股定理求得AB邊的長(zhǎng)度,然后根據(jù)菱形的性質(zhì)和三角形的面積公式進(jìn)行解答.

詳解:(1)證明:∵CEDB,BEDC,

∴四邊形DBEC為平行四邊形.

又∵RtABC中,∠ABC=90°,點(diǎn)DAC的中點(diǎn),

CD=BD=AC,

∴平行四邊形DBEC是菱形;

(2)∵點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),AD=3,DF=1,

DF是△ABC的中位線,AC=2AD=6,SBCD=SABC

BC=2DF=2.

又∵∠ABC=90°,

AB===4

∵平行四邊形DBEC是菱形,

S四邊形DBEC=2SBCD=SABC=ABBC=×4×2=4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖A在數(shù)軸上所對(duì)應(yīng)的數(shù)為﹣2

1)點(diǎn)B在點(diǎn)A右邊距A點(diǎn)4個(gè)單位長(zhǎng)度,求點(diǎn)B所對(duì)應(yīng)的數(shù);

2)在(1)的條件下,點(diǎn)A以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng),點(diǎn) B 以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向右運(yùn)動(dòng),當(dāng)點(diǎn)A運(yùn)動(dòng)到﹣6所在的點(diǎn)處時(shí),求A,B兩點(diǎn)間距離.

3)在2)的條件下,現(xiàn)A點(diǎn)靜止不動(dòng),B點(diǎn)再以每秒2個(gè)單位長(zhǎng)度沿?cái)?shù)軸向左運(yùn)動(dòng)時(shí),經(jīng)過多長(zhǎng)時(shí)間A,B兩點(diǎn)相距4個(gè)單位長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以△ABC的三邊為邊分別作等邊△ACD、△ABE△BCF, 則下列結(jié)論:

①△EBF≌△DFC;

四邊形AEFD為平行四邊形;

當(dāng)AB=AC,∠BAC=1200時(shí),四邊形AEFD是正方形.

其中正確的結(jié)論是 .(請(qǐng)寫出正確結(jié)論的番號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E在邊AD上,點(diǎn)F在邊BC的延長(zhǎng)線上,連結(jié)EF與邊CD相交于點(diǎn)G,連結(jié)BE與對(duì)角線AC相交于點(diǎn)H,AE=CF,BE=EG

1)求證:EF∥AC;

2)求∠BEF大小;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥DE,AC∥DF,AC=DF,添加下列條件,不能判斷 △ABC≌△DEF的是( )

A. EF=BC B. AB=DE C. EF∥BC D. B=E

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為( )

A.3 km
B.3 km
C.4 km
D.(3 ﹣3)km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD的邊長(zhǎng)為2,過點(diǎn)A作射線AM與線段BD交于點(diǎn)M,BAM=α(0°<α<90°),作CEAM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,連接CN.

(1)如圖,當(dāng)0°<α<45°時(shí),

依題意在圖中補(bǔ)全圖并證明:AM=CN 當(dāng)BDCN,求DM的值

(2)探究NCEBAM之間的數(shù)量關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究多邊形內(nèi)角和問題.

連接多邊形不相鄰的兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線.從多邊形某一個(gè)頂點(diǎn)出發(fā)的×對(duì)角線可以把一個(gè)多邊形分成幾個(gè)三角形.這樣就把多邊形內(nèi)角和問題轉(zhuǎn)化為三角形內(nèi)角和問題了.

(1)請(qǐng)你試一試,做一做,把下面表格補(bǔ)充完整:

名稱

圖形

內(nèi)角和

三角形

180°

四邊形

2×180°=360°

五邊形

   

六邊形

   

根據(jù)表格探究發(fā)現(xiàn)的規(guī)律,完成下面的問題:

(2)七邊形的內(nèi)角和等于   度;

(3)如果一個(gè)多邊形有n條邊,請(qǐng)你用含有n的代數(shù)式表示這個(gè)多邊形的內(nèi)角和:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若順次連接四邊形的各邊中點(diǎn)所得的四邊形是菱形,則該四邊形一定是(  )

A. 矩形 B. 一組對(duì)邊相等,另一組對(duì)邊平行的四邊形

C. 對(duì)角線互相垂直的四邊形 D. 對(duì)角線相等的四邊形

查看答案和解析>>

同步練習(xí)冊(cè)答案