【題目】已知AB是⊙O的直徑,AT是⊙O的切線,∠ABT=50°,BT交⊙O于點(diǎn)C,E是AB上一點(diǎn),延長CE交⊙O于點(diǎn)D.
(1)如圖①,求∠T和∠CDB的大。
(2)如圖②,當(dāng)BE=BC,求∠CDO的大小.
【答案】(1)∠T==40°,∠CDB=40°;(2)∠CDO=15°.
【解析】試題分析:(1)根據(jù)切線的性質(zhì):圓的切線垂直于經(jīng)過切點(diǎn)的半徑,得∠TAB=90°,根據(jù)三角形內(nèi)角和得∠T的度數(shù),由直徑所對(duì)的圓周角是直角和同弧所對(duì)的圓周角相等得∠CDB的度數(shù);
(2)如圖②,連接AD,根據(jù)等邊對(duì)等角得:∠BCE=∠BEC=65°,利用同圓的半徑相等知:OA=OD,同理∠ODA=∠OAD=65°,由此可得結(jié)論.
試題解析:(1)如圖,連接AC,
∵AB是⊙O的直徑,AD是⊙O的切線,
∴AT⊥AB,即∠TAB=90°
∵∠ABT=50°,
∴∠T=90°-∠ABT=40°
由AB是⊙O的直徑,得∠ACB=90°,
∴∠CAB=90°-∠ABC=40°
∴∠CDB=∠CAB=40°;
(2)如圖,連接AD
在△BCE中,BE=BC,∠EBC=50°,
∴∠BCE=∠BEC=65°,
∴∠BAD=∠BCD=65°
∵OA=OD
∴∠ODA=∠OAD=65°
∵∠ADC=∠ABC=50°
∴∠CDO=∠ODA-∠ADC=15°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某單位組織職工開展植樹活動(dòng),植樹量與人數(shù)之間的關(guān)系如圖20-1-1所示,由圖可知參加本次植樹活動(dòng)的共有______人,他們總共植樹______棵,平均每人植樹_____棵(結(jié)果精確到0.01).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的文字后,回答問題:
甲、乙兩人同時(shí)解答題目:“化簡并求值:,其中a=5.”甲、乙兩人的解答不同;
甲的解答是:;
乙的解答是:.
(1) 的解答是錯(cuò)誤的.
(2)錯(cuò)誤的解答在于未能正確運(yùn)用二次根式的性質(zhì): .
(3)模仿上題解答:化簡并求值:,其中a=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對(duì)稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn),當(dāng)△PAC的周長最小時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明將他的7次數(shù)學(xué)測驗(yàn)成績按順序繪成了兩幅統(tǒng)計(jì)圖,依此來觀察自己近期數(shù)學(xué)的學(xué)習(xí)情況和成績的進(jìn)步情況.
(1)甲、乙兩幅統(tǒng)計(jì)圖所表示的數(shù)據(jù)相同嗎?甲圖和乙圖給人造成的感覺各是什么?
(2)若小明要向他的父母說明他的數(shù)學(xué)成績在努力后的情況,他將向父母展示哪幅統(tǒng)計(jì)圖,為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上三點(diǎn)M,O,N對(duì)應(yīng)的數(shù)分別為-1,0,3,點(diǎn)P為數(shù)軸上任意一點(diǎn),其對(duì)應(yīng)的數(shù)為x.
(1)MN的長為 ;
(2)如果點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,那么x的值是 ;
(3)數(shù)軸上是否存在點(diǎn)P,使點(diǎn)P到點(diǎn)M、點(diǎn)N的距離之和是8?若存在,直接寫出x的值;若不存在,請(qǐng)說明理由.
(4)如果點(diǎn)P以每分鐘1個(gè)單位長度的速度從點(diǎn)O向左運(yùn)動(dòng),同時(shí)點(diǎn)M和點(diǎn)N分別以每分鐘2個(gè)單位長度和每分鐘3個(gè)單位長度的速度也向左運(yùn)動(dòng).設(shè)t分鐘時(shí)點(diǎn)P到點(diǎn)M、點(diǎn)N的距離相等,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用一些相同的小立方塊搭一個(gè)幾何體,使它從正面看和從上面看的形狀圖如圖所示,從上面看的形狀圖中小正方形中的字母表示在位置的小立方塊的個(gè)數(shù),解答下列問題.
(1)各表示幾?
(2)當(dāng)時(shí),畫出這個(gè)幾何體從左面看到的形狀圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某檢修小組從A地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中五次行駛紀(jì)錄如下。(單位:千米)
第一次 | 第二次 | 第三次 | 第四次 | 第五次 |
-4 | +7 | -9 | +7 | -2 |
(1)求第二次記錄時(shí)距A地多遠(yuǎn)?
(2)在第______次紀(jì)錄時(shí)距A地最遠(yuǎn)。
(3)若每千米耗油0.8升,問共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為∠AOB的邊OA上一點(diǎn),OC=6,N為邊OB上異于點(diǎn)O的一動(dòng)點(diǎn),P是線段CN上一點(diǎn),過點(diǎn)P分別作PQ∥OA交OB于點(diǎn)Q,PM∥OB交OA于點(diǎn)M.
(1)若∠AOB=60,OM=4,OQ=1,求證:CN⊥OB.
(2)當(dāng)點(diǎn)N在邊OB上運(yùn)動(dòng)時(shí),四邊形OMPQ始終保持為菱形.
①問: 的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請(qǐng)說明理由.
②設(shè)菱形OMPQ的面積為S1,△NOC的面積為S2,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com