如圖,△ABC的外心坐標(biāo)是__________.
(-2,-1).

試題分析:首先由△ABC的外心即是三角形三邊垂直平分線的交點,所以在平面直角坐標(biāo)系中作AB與BC的垂線,兩垂線的交點即為△ABC的外心.
試題解析:∵△ABC的外心即是三角形三邊垂直平分線的交點,
∴作圖得:

∴EF與MN的交點O′即為所求的△ABC的外心,
∴△ABC的外心坐標(biāo)是(-2,-1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB經(jīng)過⊙O上的點C,且OA=OB,CA=CB,⊙O分別與OA、OB的交點D、E恰好是OA、OB的中點,EF切⊙O于點E,交AB于點F.
(1)求證:AB是⊙O的切線;
(2)若∠A=30°,⊙O的半徑為2,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀材料:
已知,如圖(1),在面積為S的△ABC中, BC=a,AC="b," AB=c,內(nèi)切圓O的半徑為r.連接OA、OB、OC,△ABC被劃分為三個小三角形.
.


(1)類比推理:若面積為S的四邊形ABCD存在內(nèi)切圓(與各邊都相切的圓),如圖(2),各邊長分別為AB=a,BC=b,CD=c,AD=d,求四邊形的內(nèi)切圓半徑r;
(2)理解應(yīng)用:如圖(3),在等腰梯形ABCD中,AB∥DC,AB=21,CD=11,AD=13,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,設(shè)它們的半徑分別為r1和r2,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知扇形的圓心角為60°,半徑為1,則扇形的弧長為( 。
A.B.πC.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,是某公園的一角,∠AOB=90°,的半徑OA長是6米,點C是OA的中點,點D在上,CD∥OB,則圖中草坪區(qū)(陰影部分)的面積是( 。
A.(3π+)米B.(π+)米C.(3π+9)米D.(π﹣9)米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

一個圓錐的側(cè)面展開圖形是半徑為8cm,圓心角為120°的扇形,則此圓錐的底面半徑為( 。
A.cmB.cmC.3cmD.cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在扇形紙片AOB中,OA =10,ÐAOB=36°,OB在直線l上.將此扇形沿l按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)過程中無滑動),當(dāng)OA落在l上時,停止旋轉(zhuǎn).則點O所經(jīng)過的路線長為 (   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知半徑為1的圓的圓心為M(0,1),點B(0,2),A是x軸負半軸上的一點,D是OA的中點,AB交⊙M于點C.若四邊形BCDM為平行四邊形,則sin∠ABD=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,AB為⊙O直徑,弦CD⊥AB于E,則下面結(jié)論中錯誤的是( 。
A.CE=DEB.C.∠BAC=∠BADD.OE=BE

查看答案和解析>>

同步練習(xí)冊答案