如圖,拋物線y=-x2+bx+c與x軸交于點A(1,0)、C,交y軸于點B,對稱軸x=-1與x軸交于點D.
(1)求該拋物線的解析式和B、C點的坐標(biāo);
(2)設(shè)點P(x,y)是第二象限內(nèi)該拋物線上的一個動點,△PBD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)點G在x軸負(fù)半軸上,且∠GAB=∠GBA,求G的坐標(biāo);
(4)若此拋物線上有一點Q,滿足∠QCA=∠ABO,若存在,求直線QC的解析式;若不存在,試說明理由.
(1)y=-x2-2x+3,C(-3,0)、B(0,3);(2)S=-x2-(-3<x<0);(3)G(-4,0);(4)存在,,或.
解析試題分析:(1)先根據(jù)拋物線y=-x2+bx+c與x軸交于點A(1,0),對稱軸為x=-1,列出關(guān)于b、c的方程組,解方程組求出b、c的值,得到拋物線的解析式為y=-x2-2x+3;再解方程-x2-2x+3=0,求出x的值,得到C點的坐標(biāo);將x=0代入y=-x2-2x+3,求出y的值,得到B點的坐標(biāo);
(2)過點P作PE⊥x軸于點E,根據(jù)S=S梯形PEOB-S△BOD-S△PDE求出S關(guān)于x的函數(shù)關(guān)系式,再根據(jù)點P(x,y)是第二象限內(nèi)該拋物線上的一個動點,得出自變量x的取值范圍;
(3)設(shè)G點坐標(biāo)為(a,0),則a<0.根據(jù)等角對等邊得出GB=GA,由此列出方程a2+32=(1-a)2,解方程求出a的值,即可得到G點坐標(biāo);
(4)先根據(jù)正切函數(shù)的定義得出tan∠ABO=,由于∠QCA=∠ABO,得到tan∠QCA=,再由直線斜率的意義可知直線QC的斜率|k|=,則k=±.由此可設(shè)直線QC的解析式為y=x+n,或y=-x+n,然后將C點坐標(biāo)(-3,0)代入,求出n的值,即可得到直線QC的解析式.
試題解析:(1) b=-2,c="3" ,C(-3,0)、B(0,3)
(2)過點P作PE⊥x軸于點E.
S=S梯形PEOB﹣S△BOD﹣S△PDE=.
將y=-x2-2x+3代入得S=-x2-x+-﹣=-x2-x.
∴-3<x<0.
∴S關(guān)于x的函數(shù)關(guān)系式為:S=-x2-(-3<x<0).
(3)G(-4,0)
(4)存在
直線QC解析式為,或.
考點:二次函數(shù)綜合題.
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商店銷售一種商品,每件的進(jìn)價為2.5元,根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量為500件,而單價每降低1元,就可以多售出200件.請你分析,銷售單價多少時,可以獲利最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=-x2+x-2交x軸于A,B兩點(點A在點B的左側(cè)),交y軸于點C,分別過點B,C作y軸,x軸的平行線,兩平行線交于點D,將△BDC繞點C逆時針旋轉(zhuǎn),使點D旋轉(zhuǎn)到y(tǒng)軸上得到△FEC,連接BF.
(1)求點B,C所在直線的函數(shù)解析式;
(2)求△BCF的面積;
(3)在線段BC上是否存在點P,使得以點P,A,B為頂點的三角形與△BOC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).
(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;
(3)點E時線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,二次函數(shù)()的圖象與軸正半軸交于A點.
(1)求證:該二次函數(shù)的圖象與x軸必有兩個交點;
(2)設(shè)該二次函數(shù)的圖象與x軸的兩個交點中右側(cè)的交點為點B,若∠ABO=45°,將直線AB向下平移2個單位得到直線l,求直線l的解析式;
(3)在(2)的條件下,設(shè)M(p,q)為二次函數(shù)圖象上的一個動點,當(dāng)時,點M關(guān)于x軸的對稱點都在直線l的下方,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2 + bx + c 交x軸于A、B兩點,交y軸于點C,對稱軸為直線x=1,已知:A(-1,0)、C(0,-3)。
(1)求拋物線y= ax2 + bx + c 的解析式;
(2)求△AOC和△BOC的面積比;
(3)在對稱軸上是否存在一個P點,使△PAC的周長最小。若存在,請你求出點P的坐標(biāo);若不存在,請你說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線經(jīng)過A、C(0,4)兩點,與x軸的另一交點是B.
(1)求拋物線的解析式;
(2)若點在第一象限的拋物線上,求點D關(guān)于直線BC的對稱點的坐標(biāo);
(3)在(2)的條件下,過點D作DE⊥BC于點E,反比例函數(shù)的圖象經(jīng)過點E,點在此反比例函數(shù)圖象上,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
復(fù)習(xí)課中,教師給出關(guān)于x的函數(shù)(k是實數(shù)).
教師:請獨立思考,并把探索發(fā)現(xiàn)的與該函數(shù)有關(guān)的結(jié)論(性質(zhì))寫到黑板上.
學(xué)生思考后,黑板上出現(xiàn)了一些結(jié)論.教師作為活動一員,又補(bǔ)充一些結(jié)論,并從中選擇如下四條:
①存在函數(shù),其圖像經(jīng)過(1,0)點;
②函數(shù)圖像與坐標(biāo)軸總有三個不同的交點;
③當(dāng)時,不是y隨x的增大而增大就是y隨x的增大而減。
④若函數(shù)有最大值,則最大值必為正數(shù),若函數(shù)有最小值,則最小值必為負(fù)數(shù);
教師:請你分別判斷四條結(jié)論的真假,并給出理由,最后簡單寫出解決問題時所用的數(shù)學(xué)方法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,拋物線過點,這條拋物線的對稱軸與x軸交于點C,點P為射線CB上一個動點(不與點C重合),點D為此拋物線對稱軸上一點,且?CPD=.
(1)求拋物線的解析式;
(2)若點P的橫坐標(biāo)為m,△PCD的面積為S,求S與m之間的函數(shù)關(guān)系式;
(3)過點P作PE⊥DP,連接DE,F(xiàn)為DE的中點,試求線段BF的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com