已知:Rt△ABC的斜邊長(zhǎng)為5,斜邊上的高為2,將這個(gè)直角三角形放置在平面直角坐標(biāo)系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點(diǎn)C落在y軸正半軸上,點(diǎn)D的坐標(biāo)為(2,0).
(1)填空:線段OA的長(zhǎng)度為_(kāi)_____,OB的長(zhǎng)度為_(kāi)_____,經(jīng)過(guò)點(diǎn)A、B、C的拋物線的關(guān)系式為_(kāi)_____;
(2)點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n>0),連接DP交BC于點(diǎn)E,當(dāng)△BDE是等腰三角形時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)E的坐標(biāo).
(3)連接CD、CP,△CDP是否有最大面積?若有,求出△CDP的最大面積和此時(shí)點(diǎn)P的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由.

【答案】分析:(1)由Rt△ABC中,CO⊥AB可證△AOC∽△COB,由相似比得OC2=OA•OB,設(shè)OA的長(zhǎng)為x,則OB=5-x,代入可求OA,OB的長(zhǎng),確定A,B,C三點(diǎn)坐標(biāo),求拋物線解析式;
(2)根據(jù)△BDE為等腰三角形,分為DE=EB,EB=BD,DE=BD三種情況,分別求E點(diǎn)坐標(biāo);
(3)將求△CDP的面積問(wèn)題轉(zhuǎn)化,如圖4,連接OP,根據(jù)S△CDP=S四邊形CODP-S△COD=S△COP+S△ODP-S△COD,表示△CDP的面積;再利用二次函數(shù)的性質(zhì)求出△CDP的最大面積和此時(shí)點(diǎn)P的坐標(biāo).
解答:(1)解:設(shè)OA的長(zhǎng)為x,則OB=5-x;
∵OC=2,AB=5,∠BOC=∠AOC=90°,∠OAC=∠OCB;
∴△AOC∽△COB,
∴OC2=OA•OB
∴22=x(5-x),
解得:x1=1,x2=4,
∵OA<OB,∴OA=1,OB=4;
∴點(diǎn)A、B、C的坐標(biāo)分別是:A(-1,0),B(4,0),C(0,2);
方法一:設(shè)經(jīng)過(guò)點(diǎn)A、B、C的拋物線的關(guān)系式為:y=ax2+bx+2,
將A、B、C三點(diǎn)的坐標(biāo)代入得:

解得:,
所以這個(gè)二次函數(shù)的表達(dá)式為:y=-x2+x+2,
方法二:設(shè)過(guò)點(diǎn)A、B、C的拋物線的關(guān)系式為:y=a(x+1)(x-4),
將C點(diǎn)的坐標(biāo)代入得:a=-,
所以這個(gè)二次函數(shù)的表達(dá)式為:y=-x2+x+2,
故答案為:1,4,y=-x2+x+2;

(2)解:如圖1,當(dāng)DE=EB時(shí),過(guò)點(diǎn)E作EF⊥BD于點(diǎn)F,
∵BO=4,OD=2,∴BD=2,
∵DE=BE,EF⊥BD,
∴DF=FB=BD=1,
∴OF=OD+DF=3,
∵EF⊥BO,CO⊥BO,
∴EF∥CO,
∴△COB∽△EFB,
=,
=,
∴EF=,
故E點(diǎn)坐標(biāo)為:(3,),
如圖2,當(dāng)EB=BD時(shí),過(guò)點(diǎn)E作EM⊥BO于點(diǎn)M,
∵CO=2,BO=4,
∴BC=2,
∵點(diǎn)D的坐標(biāo)為(2,0),
∴BD=BE=4-2=2,
∵EM∥CO,
∴△COB∽△EMB,
=,
=,
∴EM=,
==,
∴BM=,
∴MO=4-
∴故E點(diǎn)坐標(biāo)為:(4-,),
如圖3,當(dāng)DE=BD時(shí),過(guò)點(diǎn)E作EN⊥BO于點(diǎn)N,
設(shè)E點(diǎn)橫坐標(biāo)為x,則ND=2-x,故BN=4-x,
=,
∴EN=(4-x),
∴在Rt△END中,
EN2+ND2=ED2,
即[(4-x)]2+(2-x)2=22,
解得:x=
∴EN=(4-x)=,
故點(diǎn)E的坐標(biāo)是:(),
故當(dāng)△BDE是等腰三角形時(shí),點(diǎn)E的坐標(biāo)分別是:(3,),(,),(4-).

(3)解:如圖4,連接OP,
∵P點(diǎn)坐標(biāo)為:(m,n),
∴P到CO距離為m,P到x軸距離為n,
S△CDP=S四邊形CODP-S△COD=S△COP+S△ODP-S△COD,
=×2m+×2n-×2×2=m+n-2
=-m2+m,
=-(m-2+,
∴當(dāng)m=時(shí),n=,此時(shí)△CDP的面積最大.此時(shí)P點(diǎn)的坐標(biāo)為(,),
S△CDP的最大值是
點(diǎn)評(píng):本題考查了二次函數(shù)的綜合運(yùn)用.關(guān)鍵是根據(jù)直角三角形中斜邊上的高分得的兩個(gè)三角形相似,以及根據(jù)等腰三角形的性質(zhì)求E點(diǎn)坐標(biāo),利用作輔助線的方法表示△CDP的面積,由二次函數(shù)的性質(zhì)求三角形面積的最大值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠ABC的平分線BE交AC于D,交⊙O于E,過(guò)E作EF∥AC交BA的延長(zhǎng)線于F.
(1)求證:EF是⊙O切線;
(2)若AB=3,EF=2,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交⊙O于E,過(guò)E作EF精英家教網(wǎng)∥AC交BA的延長(zhǎng)線于F.
(1)求證:EF是⊙O切線;
(2)若AB=15,EF=10,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知以Rt△ABC的邊AB為直徑作△ABC的外接圓⊙O,∠B的平分線BE交AC于D,交
⊙O于E,過(guò)E作EF∥AC交BA的延長(zhǎng)線于F.
(1)判斷直線EF與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=15,EF=10,求AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•深圳)已知:Rt△ABC的斜邊長(zhǎng)為5,斜邊上的高為2,將這個(gè)直角三角形放置在平面直角坐標(biāo)系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點(diǎn)C落在y軸正半軸上(如圖1).
(1)求線段OA、OB的長(zhǎng)和經(jīng)過(guò)點(diǎn)A、B、C的拋物線的關(guān)系式.
(2)如圖2,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n>0),連接DP交BC于點(diǎn)E.
①當(dāng)△BDE是等腰三角形時(shí),直接寫出此時(shí)點(diǎn)E的坐標(biāo).
②又連接CD、CP(如圖3),△CDP是否有最大面積?若有,求出△CDP的最大面積和此時(shí)點(diǎn)P的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:Rt△ABC的斜邊長(zhǎng)為5,斜邊上的高為2,將這個(gè)直角三角形放置在平面直角坐標(biāo)系中,使其斜邊AB與x軸重合(其中OA<OB),直角頂點(diǎn)C落在y軸正半軸上,點(diǎn)D的坐標(biāo)為(2,0).
(1)填空:線段OA的長(zhǎng)度為
1
1
,OB的長(zhǎng)度為
4
4
,經(jīng)過(guò)點(diǎn)A、B、C的拋物線的關(guān)系式為
y=-
1
2
x2+
3
2
x+2
y=-
1
2
x2+
3
2
x+2

(2)點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn)(其中m>0,n>0),連接DP交BC于點(diǎn)E,當(dāng)△BDE是等腰三角形時(shí),請(qǐng)直接寫出此時(shí)點(diǎn)E的坐標(biāo).
(3)連接CD、CP,△CDP是否有最大面積?若有,求出△CDP的最大面積和此時(shí)點(diǎn)P的坐標(biāo);若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案