【題目】在平面直角坐標(biāo)系中,點A的坐標(biāo)是(0,3),點B在x軸上,將△AOB繞點A逆時針旋轉(zhuǎn)90°得到△AEF,點O、B的對應(yīng)點分別是點E、F.

(1)若點B的坐標(biāo)是(﹣4,0),請在圖中畫出△AEF,并寫出點E、F的坐標(biāo).
(2)當(dāng)點F落在x軸的上方時,試寫出一個符合條件的點B的坐標(biāo).

【答案】
(1)

解:∵△AOB繞點A逆時針旋轉(zhuǎn)90°后得到△AEF,

∴AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,

∴△AEF在圖中表示為:

∵AO⊥AE,AO=AE,

∴點E的坐標(biāo)是(3,3),

∵EF=OB=4,

∴點F的坐標(biāo)是(3,﹣1)


(2)

解:∵點F落在x軸的上方,

∴EF<AO,

又∵EF=OB,

∴OB<AO,AO=3,

∴OB<3,

∴一個符合條件的點B的坐標(biāo)是(﹣2,0)


【解析】(1)△AOB繞點A逆時針旋轉(zhuǎn)90°后得到△AEF,所以AO⊥AE,AB⊥AF,BO⊥EF,AO=AE,AB=AF,BO=EF,據(jù)此在圖中畫出△AEF,并寫出點E、F的坐標(biāo)即可.(2)根據(jù)點F落在x軸的上方,可得EF<AO;然后根據(jù)EF=OB,判斷出OB<3,即可求出一個符合條件的點B的坐標(biāo)是多少.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD,CB=CD,對角線AC,BD相交于點O,下列結(jié)論中: ①∠ABC=∠ADC;
②AC與BD相互平分;
③AC,BD分別平分四邊形ABCD的兩組對角;
④四邊形ABCD的面積S= ACBD.
正確的是(填寫所有正確結(jié)論的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是正方形,△EBC是等邊三角形.
(1)求證:△ABE≌△DCE;
(2)求∠AED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形AECF都是菱形,點E、F在BD上.已知∠BAD=120°,∠EAF=30°,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是(
A.如圖1,展開后測得∠1=∠2
B.如圖2,展開后測得∠1=∠2且∠3=∠4
C.如圖3,測得∠1=∠2
D.如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+c(a≠0)與y軸交于點A,與x軸交于B,C兩點(點C在x軸正半軸上),△ABC為等腰直角三角形,且面積為4,現(xiàn)將拋物線沿BA方向平移,平移后的拋物線過點C時,與x軸的另一點為E,其頂點為F,對稱軸與x軸的交點為H.

(1)求a、c的值.
(2)連接OF,試判斷△OEF是否為等腰三角形,并說明理由.
(3)現(xiàn)將一足夠大的三角板的直角頂點Q放在射線AF或射線HF上,一直角邊始終過點E,另一直角邊與y軸相交于點P,是否存在這樣的點Q,使以點P、Q、E為頂點的三角形與△POE全等?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件.若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù);
(2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%.按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(﹣3,0),(0,6).動點P從點O出發(fā),沿x軸正方向以每秒1個單位的速度運動,同時動點C從點B出發(fā),沿射線BO方向以每秒2個單位的速度運動,以CP,CO為鄰邊構(gòu)造PCOD,在線段OP延長線上取點E,使PE=AO,設(shè)點P運動的時間為t秒.

(1)當(dāng)點C運動到線段OB的中點時,求t的值及點E的坐標(biāo);
(2)當(dāng)點C在線段OB上時,求證:四邊形ADEC為平行四邊形;
(3)在線段PE上取點F,使PF=1,過點F作MN⊥PE,截取FM=2,F(xiàn)N=1,且點M,N分別在一,四象限,在運動過程中,設(shè)PCOD的面積為S.
①當(dāng)點M,N中有一點落在四邊形ADEC的邊上時,求出所有滿足條件的t的值;
②若點M,N中恰好只有一個點落在四邊形ADEC的內(nèi)部(不包括邊界)時,直接寫出S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用). A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面.

現(xiàn)有19張硬紙板,裁剪時x張用A方法,其余用B方法.
(1)用x的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?

查看答案和解析>>

同步練習(xí)冊答案