(2012•無錫)如圖的平面直角坐標(biāo)系中有一個(gè)正六邊形ABCDEF,其中C、D的坐標(biāo)分別為(1,0)和(2,0).若在無滑動的情況下,將這個(gè)六邊形沿著x軸向右滾動,則在滾動過程中,這個(gè)六邊形的頂點(diǎn)A、B、C、D、E、F中,會過點(diǎn)(45,2)的是點(diǎn)
B
B
分析:先連接A′D,過點(diǎn)F′,E′作F′G⊥A′D,E′H⊥A′D,由正六邊形的性質(zhì)得出A′的坐標(biāo),再根據(jù)每6個(gè)單位長度正好等于正六邊形滾動一周即可得出結(jié)論.
解答:解:如圖所示:
當(dāng)滾動到A′D⊥x軸時(shí),E、F、A的對應(yīng)點(diǎn)分別是E′、F′、A′,連接A′D,點(diǎn)F′,E′作F′G⊥A′D,E′H⊥A′D,
∵六邊形ABCDEF是正六邊形,
∴∠A′F′G=30°,
∴A′G=
1
2
A′F′=
1
2
,同理可得HD=
1
2
,
∴A′D=2,
∵D(2,0)
∴A′(2,2),OD=2,
∵正六邊形滾動6個(gè)單位長度時(shí)正好滾動一周,
∴從點(diǎn)(2,2)開始到點(diǎn)(45,2)正好滾動43個(gè)單位長度,
43
6
=7…1,
∴恰好滾動7周多一個(gè),
∴會過點(diǎn)(45,2)的是點(diǎn)B.
故答案為:B.
點(diǎn)評:本題考查的是正多邊形和圓及圖形旋轉(zhuǎn)的性質(zhì),根據(jù)題意作出輔助線,利用正六邊形的性質(zhì)求出A′點(diǎn)的坐標(biāo)是解答此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•無錫) 如圖,△ABC中,∠ACB=90°,AB=8cm,D是AB的中點(diǎn).現(xiàn)將△BCD沿BA方向平移1cm,得到△EFG,F(xiàn)G交AC于H,則GH的長等于
3
3
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•無錫)如圖,以M(-5,0)為圓心、4為半徑的圓與x軸交于A、B兩點(diǎn),P是⊙M上異于A、B的一動點(diǎn),直線PA、PB分別交y軸于C、D,以CD為直徑的⊙N與x軸交于E、F,則EF的長(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•無錫)如圖,梯形ABCD中,AD∥BC,AD=3,AB=5,BC=9,CD的垂直平分線交BC于E,連接DE,則四邊
形ABED的周長等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•無錫)如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個(gè)全等的等腰直角三角形,再沿圖中的虛線折起,折成一個(gè)長方體形狀的包裝盒(A、B、C、D四個(gè)頂點(diǎn)正好重合于上底面上一點(diǎn)).已知E、F在AB邊上,是被剪去的一個(gè)等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=BF=x(cm).
(1)若折成的包裝盒恰好是個(gè)正方體,試求這個(gè)包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•無錫)如圖,菱形ABCD的邊長為2cm,∠DAB=60°.點(diǎn)P從A點(diǎn)出發(fā),以
3
cm/s的速度,沿AC向C作勻速運(yùn)動;與此同時(shí),點(diǎn)Q也從A點(diǎn)出發(fā),以1cm/s的速度,沿射線AB作勻速運(yùn)動.當(dāng)P運(yùn)動到C點(diǎn)時(shí),P、Q都停止運(yùn)動.設(shè)點(diǎn)P運(yùn)動的時(shí)間為ts.
(1)當(dāng)P異于A、C時(shí),請說明PQ∥BC;
(2)以P為圓心、PQ長為半徑作圓,請問:在整個(gè)運(yùn)動過程中,t為怎樣的值時(shí),⊙P與邊BC分別有1個(gè)公共點(diǎn)和2個(gè)公共點(diǎn)?

查看答案和解析>>

同步練習(xí)冊答案