一電工師傅需要在兩幢樓房AB、CE的房頂拉接電線,其中樓CE高42m,樓AB高30m,兩幢樓相距16m,那么電工師傅拉接電線至少多少米?
連結(jié)AE,過(guò)點(diǎn)A作ADBC且交EC于點(diǎn)D,則有Rt△ADE,∠ADE=90°.
由題可知,AD=BC=16,ED=EC-AB=12由勾股定理,
可得AE2=AD2+ED2
則E2=400,
所以AE=20(m),
答:電工師傅拉接電線至少20米.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,將一根長(zhǎng)為22cm的筷子,置于底面直徑為5cm,高為12cm的圓柱形水杯中,設(shè)筷子露在杯子外面的長(zhǎng)度為hcm,則h的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們給出如下定義:若一個(gè)四邊形中存在相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊.
(1)寫(xiě)出你所知道的特殊四邊形中是勾股四邊形的兩種圖形的名稱______,______.
(2)如下圖(1),請(qǐng)你在圖中畫(huà)出以格點(diǎn)為頂點(diǎn),OA、OB為勾股邊,且對(duì)角線相同的所有勾股四邊形OAMB.
(3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連接DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在RT△ACB中,∠ACB=90°,CD是斜邊上的中線,CD=4,且a+b=10,請(qǐng)你利用所學(xué)知識(shí)求△ACB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在△ABC中,AB=2
3
cm,AC=2cm,BC邊上的高AD=
3
cm,則邊BC的長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若(a-上)2+|b-2|=0,則以a,b為直角邊的直角三角形的斜邊長(zhǎng)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,正方形OABC的邊長(zhǎng)為1,以點(diǎn)A為圓心,AC為半徑畫(huà)弧交數(shù)軸與點(diǎn)D,則點(diǎn)D對(duì)應(yīng)的數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在△ABC中,AB=20,AC=15,高AD=12,則S△ABC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,一個(gè)圓柱體的高為6cm,底面半徑為
8
π
cm,在圓柱體下底面A點(diǎn)有一只螞蟻,想吃到上底面B點(diǎn)的一粒砂糖(A,B是圓柱體上、下底面相對(duì)的兩點(diǎn)),則這只螞蟻從A出點(diǎn)沿著圓柱表面爬到B點(diǎn)的最短路線是多長(zhǎng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案