如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象的頂點在第一象限,且過點(0,1)和(﹣1,0).下列結(jié)論:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤當x>﹣1時,y>0,其中正確結(jié)論的個數(shù)是
A.5個B.4個C.3個D.2個
B

分析:∵二次函數(shù)y=ax2+bx+c(a≠0)過點(0,1)和(﹣1,0),∴c=1,a﹣b+c=0。
①∵拋物線的對稱軸在y軸右側(cè),∴x>0!郺與b異號!郺b<0,正確。
②∵拋物線與x軸有兩個不同的交點,∴b2﹣4ac>0。
∵c=1,∴b2﹣4a>0,即b2>4a。正確。
④∵拋物線開口向下,∴a<0。
∵ab<0,∴b>0。
∵a﹣b+c=0,c=1,∴a=b﹣1。∴b﹣1<0,即b<1!0<b<1,正確。
③∵a﹣b+c=0,∴a+c=b!郺+b+c=2b>0。
∵b<1,c=1,a<0,∴a+b+c=a+b+1<a+1+1=a+2<0+2=2!0<a+b+c<2,正確。
⑤拋物線y=ax2+bx+c與x軸的一個交點為(﹣1,0),設(shè)另一個交點為(x0,0),則x0>0,
由圖可知,當﹣1<x<x0時,y>0;當x>x0時,y<0。
∴當x>﹣1時,y>0的結(jié)論錯誤。
綜上所述,正確的結(jié)論有①②③④。故選B。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

“綠色出行,低碳健身”已成為廣大市民的共識.某旅游景點新增了一個公共自行車停車場,6:00至18:00市民可在此借用自行車,也可將在各停車場借用的自行車還于此地.林華同學統(tǒng)計了周六該停車場各時段的借、還自行車數(shù),以及停車場整點時刻的自行車總數(shù)(稱為存量)情況,表格中x=1時的y值表示7:00時的存量,x=2時的y值表示8:00時的存量…依此類推.他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個二次函數(shù)關(guān)系.
時段
x
還車數(shù)(輛)
借車數(shù)(輛)
存量y(輛)
6:00﹣7:00
1
45
5
100
7:00﹣8:00
2
43
11
n





根據(jù)所給圖表信息,解決下列問題:
(1)m=   ,解釋m的實際意義:   ;
(2)求整點時刻的自行車存量y與x之間滿足的二次函數(shù)關(guān)系式;
(3)已知9:00~10:00這個時段的還車數(shù)比借車數(shù)的3倍少4,求此時段的借車數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線與拋物線相交于A,B兩點,與x軸正半軸相交于點D,與y軸相交于點C,設(shè)△OCD的面積為S,且。
(1)求b的值;
(2)求證:點在反比例函數(shù)的圖象上;
(3)求證:。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,二次函數(shù)y=ax2+bx+c的圖象中,王剛同學觀察得出了下面四條信息:(1)b24ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中錯誤的有
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)y=x2+2x﹣3,當x=m時,y<0,則m的值可能是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知拋物線y=a(x﹣3)2+2經(jīng)過點(1,﹣2).
(1)求a的值;
(2)若點A(m,y1)、B(n,y2)(m<n<3)都在該拋物線上,試比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列二次函數(shù)的圖象,不能通過函數(shù)y=3x2的圖象平移得到的是
A.y=3x2+2B.y=3(x﹣1)2
C.y=3(x﹣1)2+2D.y=2x2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知b<0時,二次函數(shù)的圖象如下列四個圖之一所示.根據(jù)圖象分析,a的值等于
A.-2B.-1C.1D.2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知⊙P的半徑為2,圓心P在拋物線上運動,當⊙P與軸相切時,
圓心P的坐標為       

查看答案和解析>>

同步練習冊答案