【題目】如圖,將正方形紙片ABCD折疊,使點D落在邊AB上的D'處,點C落在C'處,若∠AD'M=50°,則∠MNC'的度數(shù)為( 。

A. 100°B. 110°C. 120°D. 130°

【答案】B

【解析】

折疊后,四邊形CDMN與四邊形C′D′MN關于MN對稱,則∠DMN=D′MN,同時∠AMD′=90°-AD'M=40°,所以∠DMN=D′MN=180°-40°÷2=70°,根據(jù)四邊形內(nèi)角和360°即可求得∠MNC'的度數(shù).

解:四邊形CDMN與四邊形C′D′MN關于MN對稱,則∠DMN=D′MN,

且∠AMD′=90°-AD'M=40°

∴∠DMN=D′MN=180°-40°÷2=70°

由于∠MD′C′=NC′D′=90°,

∴∠MNC'=360°-90°-90°-70°=110°

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,長方形OABC在平面直角坐標系內(nèi)的位置如圖所示,點O為坐標原點,點A的坐標為(10,0),點B的坐標為(10,8).

1)直接寫出點C的坐標為:C , );

2)已知直線AC與雙曲線y=m0)在第一象限內(nèi)有一點交點Q為(5,n);

mn的值;

若動點PA點出發(fā),沿折線AOOC的路徑以每秒2個單位長度的速度運動,到達C處停止.求△OPQ的面積S與點P的運動時間t(秒)的函數(shù)關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A(–4,n),B(2,–4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)的圖象的兩個交點

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求直線AB與x軸的交點C的坐標及AOB的面積;

3)求不等式的解集(請直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC,O ABC 所在平面內(nèi)的一點,連接 OB、OC,將∠ABO、∠ACO分別記為∠1、∠2

(1)如圖(1),當點 O 在圖中所示的位置時,∠1+∠2+∠A+∠O ;

(2)如圖(2),當點 O ABC 的內(nèi)部時,∠1、∠2、∠A、∠OC四個角之間滿足怎樣 的數(shù)量關系?請寫出你的結論并說明理由;

(3)當點 O ABC 所在平面內(nèi)運動時( O 不在三邊所在的直線上),由于所處的位 置不同,∠1、∠2、∠A、∠OC四個角之間滿足的數(shù)量關系還存在著與(1)、(2) 中不同的結論,請在圖(3)中畫出一種不同的示意圖,并直接寫出相應的結論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列方程的解法中,錯誤的個數(shù)是( 。

①方程2x-1=x+1移項,得3x=0

②方程=1去分母,得x-1=3=x=4

③方程1-去分母,得4-x-2=2x-1

④方程去分母,得2x-2+10-5x=1

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABBC于點B,CDBC于點C,AB=4,CD=6,BC=14,PBC邊上一點,試問BP為何值時,以A,B,P為頂點的三角形與以P,C,D為頂點的三角形相似?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的解析式為y=2x+5,其圖象過點A-2,a),Bb,-1).
1)求ab的值,并畫出此一次函數(shù)的圖象;

2)在y軸上是否存在點C,使得AC+BC的值最。咳舸嬖,求出點C的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,甲、乙兩車分別從相距480kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,甲車到達C地后因有事按原路原速返回A地.乙車從B地直達A地,兩車同時到達A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關系如圖2,結合圖象信息解答下列問題:

(1)乙車的速度是   千米/時,乙車行駛的時間t=   小時;

(2)求甲車C地按原路原速返回A地的過程中,甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關系式;

(3)直接寫出甲車出發(fā)多長時間兩車相距80千米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠B=90°,AB=6cm,BC=8cm,點D從點A出發(fā)以1cm/s的速度運動到點C停止.作DEAC交邊ABBC于點E,以DE為邊向右作正方形DEFG.設點D的運動時間為t(s).

(1)求AC的長.

(2)請用含t的代數(shù)式表示線段DE的長.

(3)當點F在邊BC上時,求t的值.

(4)設正方形DEFGABC重疊部分圖形的面積為S(cm2),當重疊部分圖形為四邊形時,求St之間的函數(shù)關系式.

查看答案和解析>>

同步練習冊答案