【題目】如圖所示,為了測量出一垂直水平地面的某高大建筑物AB的高度,一測量人員在該建筑物附近C處,測得建筑物頂端A處的仰角大小為45°,隨后沿直線BC向前走了100米后到達D處,在D處測得A處的仰角大小為30°,則建筑物AB的高度約為米. (注:不計測量人員的身高,結果按四舍五入保留整數(shù),參考數(shù)據(jù): ≈1.41, ≈1.73)

【答案】137
【解析】解:設AB=x米, 在Rt△ABC中,∵∠ACB=45°,
∴BC=AB=x米,
則BD=BC+CD=x+100(米),
在Rt△ABD中,∵∠ADB=30°,
∴tan∠ADB= = ,即 =
解得:x=50+50 ≈137,
即建筑物AB的高度約為137米
所以答案是:137.
【考點精析】通過靈活運用關于仰角俯角問題,掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角即可以解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線y=4x+4x、y軸分別相交于點A、B,四邊形ABCD是正方形,拋物線C,D兩點,且C為頂點,則a的值為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【背景知識】數(shù)軸是初中數(shù)學的一個重要工具,利用數(shù)軸可以將數(shù)與形完美地結 合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:若數(shù)軸上點 A、點 B 表示的數(shù)分別為 a、b,則A、B 兩點之間的距離 AB= ,線段 AB 的中點表示的數(shù)為 .

【問題情境】如圖,數(shù)軸上點A表示的數(shù)為-2,點B表示的數(shù)為8,點P從點 A 出發(fā), 以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點Q從點B出發(fā),以每秒 2個單 位長度的速度向左勻速運動,設運動時間為t(t>0).

【綜合運用】(1) 填空:

①A、B兩點之間的距離AB=__________,線段AB的中點表示的數(shù)為_______;

②用含t的代數(shù)式表示:t秒后,點P表示的數(shù)為_______;點Q表示的數(shù)為_____.

(2) 求當t為何值時,P、Q 兩點相遇,并寫出相遇點所表示的數(shù);

(3)求當t為何值時,PQ=AB;

(4)若點M為PA的中點,點N為PB的中點,點 P在運動過程中,線段MN的長度是否發(fā) 生變化?若變化,請說明理由;若不變,請求出線段MN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系xOy,雙曲線y(x>0)與直線ykxk的交點為點A(m,2).

(1) k的值;

(2) x>0時,直接寫出不等式kx-k ≤的解集:_ ;

(3) 設直線ykxky軸交于點B,若Cx軸上一點,且滿足ABC的面積是4,求點C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】實踐操作

如圖1,在矩形紙片ABCD中,AB>AD.

第一步:如圖2,將圖1中的矩形紙片ABCD沿過點A的直線折疊,使點D落在AB上的點E處,折痕為AF,再沿EF折疊,然后把紙片展平.

第二步:如圖3,將圖2中的矩形紙片再次折疊,使點D與點F重合,折痕為GH,然后展平,隱去AF.

第三步:如圖4,將圖3中的矩形紙片沿AH折疊,得到△AD′H,再沿AD′折疊,折痕為AM,AM與折痕EF交于點N,然后展平.

問題解決

(1) 如圖2,說明四邊形AEFD是正方形;

(2) 如圖4,判斷NFND′的數(shù)量關系,并說明理由;

探索發(fā)現(xiàn)

(3)4MHAM之間滿足MH=nAM,請求出n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,高速公路的同一側有A、B兩城鎮(zhèn),它們到高速公路所在直線MN的距離分別為AA′=2 km,BB′=4 km,且A′B′=8 km.

(1)要在高速公路上A′、B′之間建一個出口P,使A、B兩城鎮(zhèn)到P的距離之和最小.請在圖中畫出P的位置,并作簡單說明.

(2)求這個最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩校派相同人數(shù)的優(yōu)秀學生,參加縣教育局舉辦的中小學生美文誦讀決賽。比賽結束后,發(fā)現(xiàn)學生成績分別是7分、8分、9分或10(滿分10),核分員依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下尚不完整的統(tǒng)計圖表。根據(jù)這些材料,請你回答下列問題:

甲校成績統(tǒng)計表

成績

7分

8分

9分

10分

人數(shù)

11

0

8

(1)在圖①中,“7分”所在扇形的圓心角等于_______

(2)求圖②中,“8分”的人數(shù),并請你將該統(tǒng)計圖補充完整。

(3)經計算,乙校學生成績的平均數(shù)是8.3分,中位數(shù)是8分。請你計算甲校學生成績的平均數(shù)、中位數(shù),并從平均數(shù)和中位數(shù)的角度分析哪個學校的成績較好?

(4)如果教育局要組織8人的代表隊參加市級團體賽,為便于管理,決定從這兩所學校中的一所挑選參賽選手,請你分析,應選哪所學校?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)在,蘇寧商場進行促銷活動,出售一種優(yōu)惠購物卡(注:此卡只作為購物優(yōu)惠憑證不能頂替貨款),花300元買這種卡后,憑卡可在這家商場按標價的8折購物.

(1)顧客購買多少元金額的商品時,買卡與不買卡花錢相等?在什么情況下購物合算?

(2)小張要買一臺標價為3500元的冰箱,如何購買合算?小張能節(jié)省多少元錢?

(3)小張按合算的方案,把這臺冰箱買下,如果商場還能盈利25%,這臺冰箱的進價是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AD是等腰△ABC底邊BC上的高,sinB= ,點E在AC上,且AE:EC=2:3,則tan∠ADE=(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案