【題目】已知:p為實(shí)數(shù).

p

k

q

3

16×3+26

2×2×6

4

16×4+26

2×3×7

5

16×5+26

2×4×8

6

16×6+26

2×5×9

7

16×7+26

2×6×10

根據(jù)上表中的規(guī)律,回答下列問題:

(1)當(dāng)p為何值時,k=38?

(2)當(dāng)p為何值時,k與q的值相等?

【答案】(1) p=;(2)當(dāng)p=8或p=-2時,k=q.

【解析】

1)首先根據(jù)表格總結(jié)出k、p之間的關(guān)系,然后將38代入求得p值即可;

2)根據(jù)表格中有關(guān)數(shù)字的規(guī)律找到qp之間的關(guān)系,與上題中的關(guān)系式聯(lián)立組成有關(guān)p的一元二次方程求解即可.

1)由題意得k=16p+26

當(dāng)k=38,38=16p+26

p=

當(dāng)p=,k=38

2)根據(jù)題意q=2p1)(p+3).

當(dāng)k=q,則有16p+26=2p1)(p+3).

整理,得:p26p16=0

解方程p1=8,p2=﹣2

當(dāng)p=8p=﹣2,k=q

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖1,直線l1x軸,直線l2為第一、三象限的角平分線,直線l1l2相交于A3,3),點(diǎn)B為直越l1上一點(diǎn),點(diǎn)Cx軸上一點(diǎn),Px,y)為一動點(diǎn).

1)當(dāng)點(diǎn)Pxy)在x軸上時,y=    ,當(dāng)點(diǎn)Px,y)在直線l1上,y=    ,當(dāng)點(diǎn)Px,y)在直線l2上時y=    

如圖1,當(dāng)點(diǎn)P在直線l1下方、x軸上方、直線l2左上方區(qū)域時,x,y滿足如下條件:,則APO,PABPOC的數(shù)量關(guān)系是    

如圖2,當(dāng)點(diǎn)P在直線l1下方、x軸上方、直線l2右下方區(qū)域時,xy滿足如下條件:,則APOPAB,POC的數(shù)量關(guān)系是    

2)當(dāng)點(diǎn)P在直線l1上方區(qū)域,且點(diǎn)P不在直線l2時,x,y滿足的條件為:,請畫出圖形,猜想APO,PAB,POC的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=4米,CD=3米,ADC=90°,AB=13米,BC=12米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A(﹣2,0),B(0,4),以B點(diǎn)為直角頂點(diǎn)在第二象限作等腰直角△ABC

(1)求C點(diǎn)的坐標(biāo);

(2)在坐標(biāo)平面內(nèi)是否存在一點(diǎn)P,使△PAB與△ABC全等?若存在,求出P點(diǎn)坐標(biāo),若不存在,請說明理由;

(3)如圖2,點(diǎn)Ey軸正半軸上一動點(diǎn),以E為直角頂點(diǎn)作等腰直角△AEM,過MMNx軸于N,求OEMN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,上一點(diǎn),平分,,.

1)求證:

2)如圖(2),若,連接為邊上一點(diǎn),滿足,連接. ①求的度數(shù);

②若平分,試說明:平分.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是(  )

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為2的圓被分成甲、乙、丙三個扇形,它們的面積之比為325.請回答下列問題.

1)扇形甲的圓心角為   

2)剪下扇形丙恰好能圍成一個幾何體的側(cè)面,這個幾何體的名稱是   

3)現(xiàn)有半徑分別為1,23的三個圓形紙片,從中選擇一個恰好和扇形丙組成(2)中的幾何體(不考慮接縫的大。,求這個幾何體的表面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個邊長分別為a,b(a>b)的正方形連在一起,三點(diǎn)C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點(diǎn)E.若OB2﹣BE2=10,則k的值是(  )

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),點(diǎn)Cx軸正半軸上一動點(diǎn),過點(diǎn)Ay軸于點(diǎn)E

如圖,若點(diǎn)C的坐標(biāo)為,試求點(diǎn)E的坐標(biāo);

如圖,若點(diǎn)Cx軸正半軸上運(yùn)動,且, 其它條件不變,連接DO,求證:OD平分

若點(diǎn)Cx軸正半軸上運(yùn)動,當(dāng)時,求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案