【題目】閱讀理解
在平面直角坐標系中,兩條直線,
①當時,,且;②當時,.
類比應用
(1)已知直線,若直線與直線平行,且經(jīng)過點,試求直線的表達式;
拓展提升
(2)如圖,在平面直角坐標系中,的頂點坐標分別為:,試求出邊上的高所在直線的表達式.
【答案】(1)y=2x+5;(2)y=2x+1.
【解析】
(1)利用平行線性質可知k值相等,進而將P點坐標代入即可求出直線的表達式;
(2)由題意設直線AB的表達式為:y=kx+b,求出直線AB的表達式,再根據(jù)題意設AB邊上的高CD所在直線的直線表達式為y=mx+n,進行分析求出CD所在直線的表達式.
(1)∵∥∴,
∵直線經(jīng)過點P(-2,1)
∴=2×(-2)+,=5,
∴直線的表達式為:y=2x+5.
(2)設直線AB的表達式為:y=kx+b
∵直線經(jīng)過
∴,解得,
∴直線AB的表達式為:;
設AB邊上的高所在直線的表達式為:y=mx+n,
∵CD⊥AB,
∴,
∵直線CD經(jīng)過點C(-1,-1),
∴
∴邊上的高所在直線的表達式為:y=2x+1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1所示,有四個同樣大小的直角三角形,兩條直角邊分別為a、b,斜邊為c,拼成一個正方形,中間留有一個小正方形.
(1)利用它們之間的面積關系,探索出關于a、b、c的等式;
(2)利用(1)中發(fā)現(xiàn)的直角三角形中兩直角邊a,b和斜邊c之間的關系,完成問題:如圖2,在直角△ABC中,∠C=90°,且c=6,a+b=8,則△ABC的面積為 ;
(3)如圖3所示,CD是直角△ABC中斜邊上的高,試證明CD2=ADBD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某項研究表明,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.如表是測得的指距與身高的一組數(shù)據(jù):
指距d(cm) | 19 | 20 | 21 |
身高h(cm) | 151 | 160 | 169 |
(1)你能確定身高h與指距d之間的函數(shù)關系式嗎?
(2)若某人的身高為196cm,一般情況下他的指距應是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,點A在y軸正半軸上,點B的坐標為(0,﹣3),反比例函數(shù)y=﹣的圖象經(jīng)過點C.
(1)求點C的坐標;
(2)若點P是反比例函數(shù)圖象上的一點且S△PAD=S正方形ABCD;求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB// CD,Rt△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,∠EFG=90°,∠E=32°.
(1)∠FGE= °
(2)若GE平分∠FGD,求∠EFB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC三個頂點都在格點上,點A、B、C的坐標分別為A(﹣4,1),B(﹣1,1),C(﹣1,3)請解答下列問題:
(1)畫出△ABC關于原點O的中心對稱圖形△A1B1C1,并寫出點C的對應點C1的坐標;
(2)畫出△ABC繞原點O逆時針旋轉90°后得到的△A2B2C2,并直接寫出點A旋轉至A2經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與x軸交于點,與y軸交于點B,拋物線經(jīng)過點.
求k的值和拋物線的解析式;
為x軸上一動點,過點M且垂直于x軸的直線與直線AB及拋物線分別交于點.
若以O,B,N,P為頂點的四邊形OBNP是平行四邊形時,求m的值.
當 時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如果△ABC的三個頂點A,B,C所對的邊分別為a,b,c,那么下列條件中,不能判斷△ABC是直角三角形的是( 。
A.∠A=25°,∠B=65°B.∠A:∠B:∠C=2:3:5
C.a:b:c=::D.a=6,b=10,c=12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某日在我國某島附近海域有兩艘自西向東航行的海監(jiān)船A、B,船在A船的正東方向,且兩船保持20海里的距離,某一時刻兩海監(jiān)船同時測得在A的東北方向,的北偏東15°方向有一我國漁政執(zhí)法船C,求此時船C與船B的距離是多少.(結果保留小數(shù)點后一位)
參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com