【題目】已知:如圖,△ABC中,AB=AC,以AB為直徑的⊙O交BC于點(diǎn)P,PD⊥AC于點(diǎn)D.
(1)、求證:PD是⊙O的切線;(6分)(2)、若∠CAB=120°,AB=2,求BC的值.(6分)
【答案】(1)、證明過(guò)程見(jiàn)解析;(2)、2
【解析】
試題分析:(1)、根據(jù)AB=AC得到∠B=∠C,根據(jù)OP=OB得出∠B=∠OPB,從而說(shuō)明∠C=∠OPB,可以得出OP∥AC,根據(jù)PD⊥AC得出∠OPD=90°,即為切線;(2)、連接AP,根據(jù)直徑得出∠APB=90°,根據(jù)∠BAC的度數(shù)求出∠C和∠B的度數(shù),根據(jù)Rt△APB求出AP和BP的長(zhǎng)度,然后得出BC的長(zhǎng)度.
試題解析:(1)、連接OP. ∵AB=AC ∴∠C=∠B ∵OP=OB ∴∠OPB=∠B ∴∠C=∠OPB
∴OP∥AC ∴∠OPD=∠PDC ∵PD⊥AC于點(diǎn)D ∴∠PDC=90° ∴∠OPD=90°,即:OP⊥PD
∵OP為⊙O半徑 ∴PD是O切線
(2)、連接AP. ∵AB為⊙O直徑 ∴∠APB=90°,即:AP⊥BC
∵AB=AC,∠BAC=120° ∴∠C=∠B=30°,BP=PC=BC
∵在Rt△APB中,∠B=30° ∴AP=AB=1
∴BP= ∴BC=2BP=2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解不等式和不等式組:
(1)x為何值時(shí),代數(shù)式 的值比 的值大1.
(2)解不等式組: ,并把解集在數(shù)軸上表示出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若關(guān)于x的一元二次方程x2+(k+3)x+2=0的一個(gè)根是﹣1,則另一個(gè)根是( )
A.1
B.0
C.2
D.﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=21,BC=13,D是AC邊上一點(diǎn),BD=12,AD=16,E是邊AB的中點(diǎn),求線段DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列運(yùn)算正確的是( )
A.x6÷x2=x3B.(2a3)2=4a5
C.x2+x4=x6D.(﹣2a)2a=4a3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果關(guān)于x的不等式(a+2014)x>a+2014的解集為x<l.那么a的取值范圍是( )
A. a>﹣2014 B. a<﹣2014 C. a>2014 D. a<2014
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式計(jì)算正確的是( )
A.6a+2a=8a2
B.(a﹣b)2=a2﹣b2
C.a4a6=a10
D.(a3)2=a5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)點(diǎn)A(-3,-2)及點(diǎn)B(0,4).
(1)求此一次函數(shù)的解析式;
(2)當(dāng)y=-5時(shí)求x的值;
(3)求此函數(shù)圖象與兩坐標(biāo)軸所圍成的三角形的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com