【題目】某班為了解學(xué)生每周進(jìn)行體育鍛煉的時(shí)間情況,對(duì)全班名學(xué)生進(jìn)行調(diào)查,按每周進(jìn)行體育鍛煉的時(shí)間(單位:小時(shí)),將學(xué)生分成五類:類,類,類,類,類.繪制成尚不完整的條形統(tǒng)計(jì)圖如圖. 根據(jù)以上信息,解答下列問題:
(1)類學(xué)生有 人,補(bǔ)全條形統(tǒng)計(jì)圖;
(2)類學(xué)生人數(shù)占被調(diào)查總?cè)藬?shù)的 %;
(3)從該班每周進(jìn)行體育鍛煉時(shí)間在的學(xué)生中任選人人,求這人每周進(jìn)行體育鍛煉時(shí)間都在中的概率.
【答案】(1)15,圖詳見解析;(2)30;(3)
【解析】
(1)根據(jù)總?cè)藬?shù)等于各類別人數(shù)之和可得E類別學(xué)生數(shù);
(2)用D類別學(xué)生數(shù)除以總?cè)藬?shù)即可得;
(3)列舉所有等可能結(jié)果,根據(jù)概率公式求解可得.
解:(1)E類別學(xué)生數(shù)=60-2-3-22-18=,補(bǔ)全圖形如下:
(2)18 ;
(3)∵每周進(jìn)行體育鍛煉時(shí)間在內(nèi)的兩人記為甲、乙,在內(nèi)的人記為,從中任選兩人有:甲乙、甲、甲、甲、乙、乙、乙、這種可能結(jié)果,其中人每周進(jìn)行體育鍛煉時(shí)間都在中的有這種結(jié)果,
∴這人每周進(jìn)行體育鍛煉時(shí)間都在中的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖1,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+5與x軸交于A,點(diǎn)B,與y軸交于點(diǎn)C,過點(diǎn)C作CD⊥y軸交拋物線于點(diǎn)D,過點(diǎn)B作BE⊥x軸,交DC延長(zhǎng)線于點(diǎn)E,連接BD,交y軸于點(diǎn)F,直線BD的解析式為y=﹣x+2.
(1)寫出點(diǎn)E的坐標(biāo);拋物線的解析式.
(2)如圖2,點(diǎn)P在線段EB上從點(diǎn)E向點(diǎn)B以1個(gè)單位長(zhǎng)度/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上從點(diǎn)B向點(diǎn)D以個(gè)單位長(zhǎng)度/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng),當(dāng)t為何值時(shí),△PQB為直角三角形?
(3)如圖3,過點(diǎn)B的直線BG交拋物線于點(diǎn)G,且tan∠ABG=,點(diǎn)M為直線BG上方拋物線上一點(diǎn),過點(diǎn)M作MH⊥BG,垂足為H,若HF=MF,請(qǐng)直接寫出滿足條件的點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫出二次函數(shù)y=2x2+8x+6的圖象.
(1)根據(jù)圖象寫出當(dāng)y隨x的增大而減小時(shí)x的范圍;
(2)根據(jù)圖象寫出滿足不等式2x2+8x+6<0的x的取值范圍;
(3)求函數(shù)圖象與兩坐標(biāo)軸交點(diǎn)所圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,以點(diǎn)為圓心、2為半徑畫圓,點(diǎn)是上任意一點(diǎn),連接,.將繞點(diǎn)按順時(shí)針方向旋轉(zhuǎn),交于點(diǎn),連接
(1)當(dāng)與相切時(shí),
①求證:是的切線;
②求點(diǎn)到的距離.
(2)連接,,當(dāng)的面積最大時(shí),點(diǎn)到的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC和△ADE是有公共頂點(diǎn)的三角形,∠BAC=∠DAE=90°,點(diǎn)P為射線BD,CE的交點(diǎn).
(1) ①如圖1,∠ADE=∠ABC=45°,求證:∠ABD=∠ACE.
②如圖2,∠ADE=∠ABC=30°,①中的結(jié)論是否成立?請(qǐng)說明理由.
(2)在(1) ①的條件下,AB=6,AD=4,若把△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°時(shí),畫圖并求PB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(-2,0),B(0,1),以線段AB為邊在第二象限作矩形ABCD,雙曲線(k<0)經(jīng)過點(diǎn)D,連接BD,若四邊形OADB的面積為6,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為6,點(diǎn)E是正方形內(nèi)部一點(diǎn),連接BE,CE,且∠ABE=∠BCE,點(diǎn)P是邊AB上一動(dòng)點(diǎn),連接PD,PE,則PD+PE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次聚會(huì)上,規(guī)定每?jī)蓚(gè)人見面必須握手,且握手1次.
(1)若參加聚會(huì)的人數(shù)為3,則共握手 次;若參加聚會(huì)的人數(shù)為5,則共握手 次;
(2)若參加聚會(huì)的人數(shù)為n(n為正整數(shù)),則共握手 次;
(3)若參加聚會(huì)的人共握手28次,請(qǐng)求出參加聚會(huì)的人數(shù).
(4)嘉嘉由握手問題想到了一個(gè)數(shù)學(xué)問題:若線段AB上共有m個(gè)點(diǎn)(不含端點(diǎn)A,B),線段總數(shù)為多少呢?請(qǐng)直接寫出結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)交軸于點(diǎn)、,交軸于點(diǎn),在軸上有一點(diǎn),連接.
(1)求二次函數(shù)的表達(dá)式;
(2)若點(diǎn)為拋物線在軸負(fù)半軸上方的一個(gè)動(dòng)點(diǎn),求面積的最大值;
(3)拋物線對(duì)稱軸上是否存在點(diǎn),使為等腰三角形,若存在,請(qǐng)直接寫出所有點(diǎn)的坐標(biāo),若不存在請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com