【題目】如圖,在平行四邊形ABCD中,BE、CE分別平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四邊形ABCD的周長.
【答案】解:在平行四邊形ABCD中,
∵AB∥CD,
∴∠ABC+∠BCD=180°,
∵∠ABE=∠EBC,∠BCE=∠ECD.,
∴∠EBC+∠BCE=90°,
∴∠BEC=90°,
∴BC2=BE2+CE2=122+52=132
∴BC=13cm,
∵AD∥BC,
∴∠AEB=∠EBC,
∴∠AEB=∠ABE,
∴AB=AE,
同理CD=ED,
∵AB=CD,
∴AB=AE=CD=ED= BC=6.5cm,
∴平行四邊形ABCD的周長=2(AB+BC)=2(6.5+13)=39cm
【解析】根據(jù)角平分線的定義和平行線的性質(zhì)得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根據(jù)直角三角形的勾股定理得到BC=13.根據(jù)等腰三角形的性質(zhì)得到AB.CD,從而求得該平行四邊形的周長.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(11·柳州)在平面直角坐標(biāo)系中,將點(diǎn)A (-2,1)向左平移2個(gè)單位到點(diǎn)Q,則點(diǎn)Q的坐標(biāo)為
A.(-2,3)B.(0,1)C.(-4,1)D.(-4,-1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=﹣3x的圖象沿y軸向上平移2個(gè)單位長度后,所得圖象對(duì)應(yīng)的函數(shù)關(guān)系式為( )
A.y=﹣3x+2
B.y=﹣3x﹣2
C.y=﹣3(x+2)
D.y=﹣3(x﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,以AB為邊在正方形內(nèi)作等邊△ABE,連接DE,CE,則∠CED的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點(diǎn)為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(diǎn)(﹣1,﹣4),則下列結(jié)論中錯(cuò)誤的是( 。
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(diǎn)(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com