【題目】如圖,在中,,點(diǎn)P從點(diǎn)B出發(fā),沿折線運(yùn)動,當(dāng)它到達(dá)點(diǎn)A時停止,設(shè)點(diǎn)P運(yùn)動的路程為點(diǎn)Q是射線CA上一點(diǎn),,連接設(shè),.
求出,與x的函數(shù)關(guān)系式,并注明x的取值范圍;
補(bǔ)全表格中的值;
x | 1 | 2 | 3 | 4 | 6 |
______ | ______ | ______ | ______ | ______ |
以表中各組對應(yīng)值作為點(diǎn)的坐標(biāo),在直角坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn),并在x的取值范圍內(nèi)畫出的函數(shù)圖象:
在直角坐標(biāo)系內(nèi)直接畫出函數(shù)圖象,結(jié)合和的函數(shù)圖象,求出當(dāng)時,x的取值范圍.
【答案】(1),;(2)12,6,4,3,2,(3),見解析.
【解析】
根據(jù)題意可以分別求得,與x的函數(shù)關(guān)系式,并注明x的取值范圍;
根據(jù)中的函數(shù)解析式,可以將表格補(bǔ)充完整,并畫出相應(yīng)的函數(shù)圖象;
根據(jù)中的函數(shù)解析式,可以畫出的函數(shù)圖象,然后結(jié)合圖象可以得到當(dāng)時,x的取值范圍,注意可以先求出時x的值.
由題意可得,
,
當(dāng)時,,
當(dāng)時,,
即,;
,
當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;
故答案為:12,6,4,3,2;
在x的取值范圍內(nèi)畫出的函數(shù)圖象如圖所示;
,
則函數(shù)圖象如圖所示,
當(dāng)時,得;當(dāng)時,;
則由圖象可得,當(dāng)時,x的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在圓心角為120°的扇形OAB中,半徑OA=2,C為的中點(diǎn),D為OA上任意一點(diǎn)(不與點(diǎn)O、A重合),則圖中陰影部分的面積為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠BAC=45°,AD⊥BC于D,點(diǎn)E在AD上,∠BEC=135°,若BC=5,S△ECA=2,則BD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,∠ABC=90°,AB=9,BC=12.點(diǎn)Q是線段AC上的一個動點(diǎn),過點(diǎn)Q作AC的垂線交射線AB于點(diǎn)P.當(dāng)△PQB為等腰三角形時,則AP的長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)A、B在反比例函數(shù)y=(k>0,x>0)的圖象上,橫坐標(biāo)分別為1,4,對角線BD∥x軸.若菱形ABCD的面積為,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形中,.
(1)如圖1,點(diǎn)為線段的中點(diǎn),連接,.若,求線段的長.
(2)如圖2,為線段上一點(diǎn)(不與,重合),以為邊向上構(gòu)造等邊三角形,線段與交于點(diǎn),連接,,為線段的中點(diǎn).連接,判斷與的數(shù)量關(guān)系,并證明你的結(jié)論.
(3)在(2)的條件下,若,請你直接寫出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)解析式為y=(m-2)
(1)若函數(shù)為正比例函數(shù),試說明函數(shù)y隨x增大而減小
(2)若函數(shù)為二次函數(shù),寫出函數(shù)解析式,并寫出開口方向
(3)若函數(shù)為反比例函數(shù),寫出函數(shù)解析式,并說明函數(shù)在第幾象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司準(zhǔn)備投資開發(fā)A、B兩種新產(chǎn)品,通過市場調(diào)研發(fā)現(xiàn):如果單獨(dú)投資A種產(chǎn)品,則所獲利潤yA(萬元)與投資金額x(萬元)之間滿足正比例函數(shù)關(guān)系:yA=kx;如果單獨(dú)投資B種產(chǎn)品,則所獲利潤yB(萬元)與投資金額x(萬元)之間滿足二次函數(shù)關(guān)系:yB=ax2+bx.根據(jù)公司信息部的報(bào)告,yA、yB(萬元)與投資金額x(萬元)的部分對應(yīng)值(如下表)
(1)求正比例函數(shù)和二次函數(shù)的解析式;
(2)如果公司準(zhǔn)備投資20萬元同時開發(fā)A、B兩種新產(chǎn)品,請你設(shè)計(jì)一個能獲得最大利潤的投資方案,并求出按此方案能獲得的最大利潤是多少萬元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=4,AD=6,∠ABC的平分線交AD于點(diǎn)E,交CD的延長線于點(diǎn)F.
(1)求DF的長;
(2)點(diǎn)H為CD的中點(diǎn),連接AH交BF于點(diǎn)G,點(diǎn)G是BF的中點(diǎn)嗎?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com