【題目】用適當(dāng)?shù)姆椒ń夥匠獭?/span>

14(x-3) =36

2x2-4x10.

3-7x+6=0

4

5(y1)22y(1y)0.

【答案】1x1=6x2=0;(2x1=2+,x2=2-;(3x1=6,x2=1;(4x1=-2,x2=1;(5y1=1y2=-1

【解析】

1)方程兩邊同除以4,然后再用直接開平方法求解即可;

2)求出b2-4ac的值,再代入公式求出即可;

3)分解因式,即可得出兩個一元一次方程,求出方程的解即可;

4)移項(xiàng)后分解因式,即可得出兩個一元一次方程,求出方程的解即可;

5)分解因式,即可得出兩個一元一次方程,求出方程的解即可.

14(x-3) =36,

(x-3) =9,

x-3=±3,

x-3=3,x-3=-3

x1=6,x2=0

2x2-4x10,

b2-4ac=-42-4×1×1=12,

x=

x1=2+,x2=2-

3-7x+6=0,

x-6)(x-1=0,

x-6=0,x-1=0

x1=6,x2=1

4

,

,

,

x1=-2,x2=1;

5(y1)22y(1y)0,

(y1)2-2y(y1)0,

y-1)(-1-y=0

y-1=0,-1-y=0,

y1=1,y2=-1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀資料:閱讀材料,完成任務(wù):材料 阿爾·花拉子密( 780~約 850),著名數(shù)學(xué)家、天文學(xué)家、地理學(xué)家,是代數(shù)與算術(shù)的整理者,被譽(yù)為代數(shù)之父。

他用以下方法求得一元二次方程 x22x350 的解:

將邊長為 x 的正方形和邊長為 1 的正方形,外加兩個長方形,長為 x,寬為 1,拼合在一起的面積是 x2x×11×1,而由 x22x350 變形得 x22x1351(如圖所示),即右邊邊長為 x1 的正方形面積為 36

所以(x1)236,則 x5.

任務(wù):請回答下列問題

(1)上述求解過程中所用的方法是( )

A.直接開平方法 B.公式法 C.配方法 D.因式分解法

(2)所用的數(shù)學(xué)思想方法是( ) 的的

A.分類討論思想 B.數(shù)形結(jié)合思想 C.轉(zhuǎn)化思想 D.公理化思想

(3)運(yùn)用上述方法構(gòu)造出符合方程 x28x90 的一個正根的正方形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,△OBA和△DOC的邊OA、OC都在x軸的正半軸上,點(diǎn)B的坐標(biāo)為(68),∠BAOOCD90°,OD5,CD3.反比例函數(shù)的圖象經(jīng)過點(diǎn)D,交AB邊于點(diǎn)E

1)求k的值;(2)求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB過點(diǎn)A3,0),B0,2

1)求直線AB的解析式。

2)過點(diǎn)AACABACAB=34,求過B、C兩點(diǎn)直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2+bx+c經(jīng)過A(﹣10)、B5,0)、C0,﹣5)三點(diǎn).

1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

2)當(dāng)0x5時,y的取值范圍為   

3)點(diǎn)P為拋物線上一點(diǎn),若SPAB21,直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)EF分別在ABAD上,且AE=DF,連接BFDE,相交于點(diǎn)G,連接CG,與BD相交于點(diǎn)H,下列結(jié)論①△AED≌△DFB;②S四邊形BCDG=CG2;③若AF=2FD,則BG=6GF,其中正確的有____________.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】長沙市計(jì)劃聘請甲、乙兩個工程隊(duì)對桂花公園進(jìn)行綠化.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)的2倍;若兩隊(duì)分別各完成300m2的綠化時,甲隊(duì)比乙隊(duì)少用3天.

1)求甲、乙兩工程隊(duì)每天能完成的綠化的面積;

2)該項(xiàng)綠化工程中有一塊長為20m,寬為8m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56m2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,4AB=5AC,AD的角平分線,點(diǎn)EBC的延長線上,于點(diǎn)F,點(diǎn)GAF上,FG=FD,連接EGAC于點(diǎn)H,若點(diǎn)HAC的中點(diǎn),則的值為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一條長40cm的繩子怎樣圍成一個面積為75cm2的矩形?能圍成一個面積為101cm2的矩形嗎?如能,說明圍法;如不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案