【題目】如圖1,已知是等腰直角三角形,,點D是BC的中點作正方形DEFG,使點A、C分別在DG和DE上,連接AE,BG.
試猜想線段BG和AE的數量關系是______;
將正方形DEFG繞點D逆時針方向旋轉,
判斷中的結論是否仍然成立?請利用圖2證明你的結論;
若,當AE取最大值時,求AF的值.
【答案】(1)BG=AE.(2)①成立BG=AE.證明見解析.AF=.
【解析】
(1)由等腰直角三角形的性質及正方形的性質就可以得出△ADE≌△BDG就可以得出結論;
(2)①如圖2,連接AD,由等腰直角三角形的性質及正方形的性質就可以得出△ADE≌△BDG就可以得出結論;
②由①可知BG=AE,當BG取得最大值時,AE取得最大值,由勾股定理就可以得出結論.
(1)BG=AE.
理由:如圖1,∵△ABC是等腰直角三角形,∠BAC=90°,點D是BC的中點,
∴AD⊥BC,BD=CD,
∴∠ADB=∠ADC=90°.
∵四邊形DEFG是正方形,
∴DE=DG.
在△BDG和△ADE中,
BD=AD,∠BDG=∠ADE,GD=ED,
∴△ADE≌△BDG(SAS),
∴BG=AE.
故答案為:BG=AE;
(2)①成立BG=AE.
理由:如圖2,連接AD,
∵在Rt△BAC中,D為斜邊BC中點,
∴AD=BD,AD⊥BC,
∴∠ADG+∠GDB=90°.
∵四邊形EFGD為正方形,
∴DE=DG,且∠GDE=90°,
∴∠ADG+∠ADE=90°,
∴∠BDG=∠ADE.
在△BDG和△ADE中,
BD=AD,∠BDG=∠ADE,GD=ED,
∴△BDG≌△ADE(SAS),
∴BG=AE;
②∵BG=AE,
∴當BG取得最大值時,AE取得最大值。
如圖3,當旋轉角為270°時,BG=AE.
∵BC=DE=4,
∴BG=2+4=6.
∴AE=6.
在Rt△AEF中,由勾股定理,得
AF= =,
∴AF=2 .
科目:初中數學 來源: 題型:
【題目】如圖所示,直線y=x與反比例函數y=(k≠0,x>0)的圖象交于點Q(4,a),點P(m,n)是反比例函數圖象上一點,且n=2m.
(1)求點 P坐標;
(2)若點M在x軸上,使得△PMQ的面積為3,求M坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2018年1月19日,中歐(廈門-西安-布達佩斯)班列駛出廈門自貿區(qū)海滄火車站,經西安直達匈牙利首都布達佩斯 ,我市與歐洲各國經貿往來日益頻繁,某歐洲客商準備在廈門采購一批特色商品,經調查,用元采購型商品的件數是用元采購型商品件數的倍,一件型商品的進價比一件型商品的進價多元.
(1)求一件型商品的進價分別為多少元?
(2)若該歐洲客商購進型商品共件進行試銷,其中型商品的件數不大于型商品的件數,且不小于件,已知型商品的售價為元/件,型商品的售價為元/件,且全部售出,設購進型商品件.
①求該客商銷售這批商品的利潤與之間的函數解析式;
②若歐洲商決定在試銷活動中每售出一件型商品,就從一件型商品的利潤中捐獻慈善資金元,求該客商售完所有商品并捐獻資金后獲得的最大收益.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市體育中考現場考試內容有三項:50米跑為必測項目.另在立定跳遠、實心球(二選一)和坐位體前屈、1分鐘跳繩(二選一)中選擇兩項.
(1)每位考生有_________種選擇方案;
(2)求小明與小剛選擇同種方案的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】佳佳調査了七年級400名學生到校的方式,根據調查結果繪制出統計圖的一部分如圖:
(1)補全條形統計圖;
(2)求扇形統計圖中表示“步行”的扇形圓心角的度數;
(3)估計在3000名學生中乘公交的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知二次函數的圖象與軸交于點(-1,0),與軸的交點在(0,-2)和(0,-1)之間(不包括這兩點),對稱軸為直線,下列結論不正確的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,熱氣球的探測器顯示,從熱氣球A看一棟大樓頂部B的俯角為,看這棟大樓底部C的俯角為,熱氣球A的高度為270米,則這棟大樓的高度為______米
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線l為y=x,過點A1(1,0)作A1B1⊥x軸,與直線l交于點B1,以原點O為圓心,OB1長為半徑畫圓弧交x軸于點A2;再作A2B2⊥x軸,交直線l于點B2,以原點O為圓心,OB2長為半徑畫圓弧交x軸于點A3;……,按此作法進行下去,則點An的坐標為(_______).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】模具廠計劃生產面積為4,周長為m的矩形模具.對于m的取值范圍,小亮已經能用“代數”的方法解決,現在他又嘗試從“圖形”的角度進行探究,過程如下:
(1)建立函數模型
設矩形相鄰兩邊的長分別為x,y,由矩形的面積為4,得,即;由周長為m,得,即.滿足要求的應是兩個函數圖象在第 象限內交點的坐標.
(2)畫出函數圖象
函數的圖象如圖所示,而函數的圖象可由直線平移得到.請在同一直角坐標系中直接畫出直線.
(3)平移直線,觀察函數圖象
①當直線平移到與函數的圖象有唯一交點時,周長m的值為 ;
②在直線平移過程中,交點個數還有哪些情況?請寫出交點個數及對應的周長m的取值范圍.
(4)得出結論
若能生產出面積為4的矩形模具,則周長m的取值范圍為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com