【題目】如圖,AD是△ABC的中線,E,F分別是ADAD延長線上的點(diǎn),且DEDF,連接BFCE,下列說法:①△ABD 和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;⑤CE=AE.其中正確的是(

A. ①② B. ③⑤ C. ①③④ D. ①④⑤

【答案】C

【解析】

根據(jù)三角形中線的定義可得BD=CD,根據(jù)等底等高的三角形的面積相等判斷出①正確,然后利用邊角邊證明BDFCDE全等,根據(jù)全等三角形對應(yīng)邊相等可得CE=BF,全等三角形對應(yīng)角相等可得∠F=CED,再根據(jù)內(nèi)錯(cuò)角相等,兩直線平行可得BFCE.

ADABC的中線,

BD=CD,

∴△ABDACD面積相等,故①正確;

ADABC的中線,

BD=CD,BAD和∠CAD不一定相等,故②錯(cuò)誤;

BDFCDE中,

,

∴△BDF≌△CDE(SAS),故③正確;

∴∠F=DEC,

BFCE,故④正確;

∵△BDF≌△CDE,

CE=BF,故⑤錯(cuò)誤,

正確的結(jié)論為:①③④,

故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C,D,E將線段AB分成2:3:4:5四部分,M,P,Q,N分別是AC,CD,DE,EB的中點(diǎn),且MN=21,求線段PQ的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:則稱是關(guān)于1的平衡數(shù)。

(1)5______是關(guān)于1的平衡數(shù);

(2)________是關(guān)于1的平衡數(shù)(用含的代數(shù)式表示);

(3)判斷與是否是關(guān)于1的平衡數(shù),并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,A(1,5)B(1,0)C(4,3)

(1) 求出ABC的面積

(2) 在圖形中作出ABC關(guān)于y軸的對稱圖形A1B1C1,并寫出A1B1C1的坐標(biāo)

(3) 是否存在一點(diǎn)PAC、AB的距離相等,同時(shí)到點(diǎn)A、點(diǎn)B的距離也相等.若存在保留作圖痕跡標(biāo)出點(diǎn)P的位置,并簡要說明理由;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,然后解決問題:和、差、倍、分等問題中有著廣泛的應(yīng)用,截長法與補(bǔ)短法在證明線段的和、差、倍、分等問題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長,使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識來解決數(shù)學(xué)問題.

(1)如圖1,在ABC中,若 AB=12,AC=8,求 BC邊上的中線AD的取值范圍.

解決此問題可以用如下方法:延長AD到點(diǎn)E使 DE=AD,再連接 BE,把AB、AC、2AD集中在ABE中.利用三角形三邊的關(guān)系即可判斷中線 AD的取值范圍是_______.

問題解決:

(2)如圖2,在四邊形ABCD中,AB=AD,ABC+ADC=180°,E、F分別是邊BC,CD上的兩點(diǎn),且EAF=BAD,求證:BE+DF=EF.

問題拓展:

(3)如圖3,在ABC中,ACB=90°,CAB=60°,點(diǎn)DABC 外角平分線上一點(diǎn),DEAC CA延長線于點(diǎn)E,F(xiàn) AC上一點(diǎn),且DF=DB.

求證:AC﹣AE=AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖中網(wǎng)格上按要求畫出圖形,并回答問題:

1)如果將三角形平移,使得點(diǎn)平移到圖中點(diǎn)位置,點(diǎn)、點(diǎn)的對應(yīng)點(diǎn)分別為點(diǎn)、點(diǎn),請畫出三角形

2)畫出三角形關(guān)于點(diǎn)成中心對稱的三角形

3)三角形與三角形是否關(guān)于某個(gè)點(diǎn)成中心對稱?如果是,請?jiān)趫D中畫出這個(gè)對稱中心,并記作點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算下列各題

13b2a2﹣(﹣4a+a2+3b+a2;

2)﹣13﹣(1××[2﹣(﹣32]

3)﹣|23|+15|4.5﹣(﹣2.5|;

489′25″48′58″;

5)化簡求值:53a2bab2)﹣(ab2+3a2b),其中a,b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知多項(xiàng)式x2ym1xy22x38是六次四項(xiàng)式,單項(xiàng)式-x3ay5m的次數(shù)與多項(xiàng)式的次數(shù)相同,求m,a的值;

(2)已知多項(xiàng)式mx4(m2)x3(2n1)x23xn不含x2x3的項(xiàng),試寫出這個(gè)多項(xiàng)式,再求當(dāng)x=-1時(shí)多項(xiàng)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長為,邊上的高所在的直線,點(diǎn)為直線上的一動(dòng)點(diǎn),連接并將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連接,則的最小值為________

查看答案和解析>>

同步練習(xí)冊答案