閱讀:
如圖,在空間中,與定點的距離等于定長的點的集合叫做球面.定點叫做球心,定長叫做半徑.球面被經(jīng)過球心的平面截得的圓叫做大圓.
探究1:當(dāng)我們把半徑為11cm的足球看成一個球時,假設(shè)有一根無彈性的細線恰好能沿足球的大圓緊緊纏繞一周,將細線的長度增加1米后,細線仍以圓形呈現(xiàn),且圓心為足球的球心.若將細線與足球表面的間隙記為h1(間隙如圖所示),求h1的長;(π取3.14,結(jié)果精確到1cm)
探究2:將探究1中的足球分別換成乒乓球和地球,其他條件都不改變.設(shè)乒乓球半徑為r,細線與乒乓球表面的間隙為h2;地球的半徑為R,細線與地球表面的間隙為h3,試比較h2與h3大小,并說明理由.

【答案】分析:(1)根據(jù)題意可知:細線所圍成的圓與足球的大圓的周長之差為100cm,繼而列方程求解即可;
(2)根據(jù)題意列出方程分別求出間隙h2和h3的值,然后比較大小即可.
解答:解:探究1:根據(jù)題意,得:2π(11+h1)-2π×11=100,
∴h1=≈16(cm).
答:h1的長約為16cm.-----(3分)
探究2:方法一:根據(jù)題意,得:2π(r+h2)-2πr=100,
解方程,得:h2=(cm).-----(4分)
又2π(R+h3)-2πR=100,
解方程,得:h2=(cm).-----(5分)
∴h2=h3.-----(6分)
方法二:通過探究1中的計算可知,間隙的大小與球的半徑的大小無關(guān).----(5分)
∴h2=h3.-----(6分)
(注:只說明相等關(guān)系,但沒有說明理由的給1分)
點評:本題考查一元一次方程的實際應(yīng)用,解題關(guān)鍵是看懂題意,同時考查了學(xué)生的理解能力,有一定難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2007•海淀區(qū)一模)閱讀:
如圖,在空間中,與定點的距離等于定長的點的集合叫做球面.定點叫做球心,定長叫做半徑.球面被經(jīng)過球心的平面截得的圓叫做大圓.
探究1:當(dāng)我們把半徑為11cm的足球看成一個球時,假設(shè)有一根無彈性的細線恰好能沿足球的大圓緊緊纏繞一周,將細線的長度增加1米后,細線仍以圓形呈現(xiàn),且圓心為足球的球心.若將細線與足球表面的間隙記為h1(間隙如圖所示),求h1的長;(π取3.14,結(jié)果精確到1cm)
探究2:將探究1中的足球分別換成乒乓球和地球,其他條件都不改變.設(shè)乒乓球半徑為r,細線與乒乓球表面的間隙為h2;地球的半徑為R,細線與地球表面的間隙為h3,試比較h2與h3大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

閱讀:
如圖,在空間中,與定點的距離等于定長的點的集合叫做球面.定點叫做球心,定長叫做半徑.球面被經(jīng)過球心的平面截得的圓叫做大圓.
探究1:當(dāng)我們把半徑為11cm的足球看成一個球時,假設(shè)有一根無彈性的細線恰好能沿足球的大圓緊緊纏繞一周,將細線的長度增加1米后,細線仍以圓形呈現(xiàn),且圓心為足球的球心.若將細線與足球表面的間隙記為h1(間隙如圖所示),求h1的長;(π取3.14,結(jié)果精確到1cm)
探究2:將探究1中的足球分別換成乒乓球和地球,其他條件都不改變.設(shè)乒乓球半徑為r,細線與乒乓球表面的間隙為h2;地球的半徑為R,細線與地球表面的間隙為h3,試比較h2與h3大小,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:河南省期中題 題型:探究題

閱讀:  如圖1,在空間中,與定點的距離等于定長的點的集合叫做球面。定點叫做球心,定長叫做半徑。球面被經(jīng)過球心的平面截得的圓叫做大圓。
探究1:當(dāng)我們把半徑為11cm的足球看成一個球時,假設(shè)有一根無彈性的細線恰好能沿足球的大圓緊緊纏繞一周,將細線的長度增加1米后,細線仍以圓形呈現(xiàn),且圓心為足球的球心。若將細線與足球表面的間隙記為h1(間隙如圖1所示),求h1的長;(π取3.14,結(jié)果精確到1cm)
探究2:將探究1中的足球分別換成乒乓球和地球,其他條件都不改變。設(shè)乒乓球的半徑為r,細線與乒乓球表面的間隙為h2;地球的半徑為R,細線與地球表面的間隙為h3,試比較h2與h3的大小,并說明理由。

                     圖1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:北京期中題 題型:解答題

閱讀:
如圖,在空間中,與定點的距離等于定長的點的集合叫做球面,定點叫做球心,定長叫做半徑,球面被經(jīng)過球心的平面截得的圓叫做大圓。

探究1:當(dāng)我們把半徑為11cm的足球看成一個球時,假設(shè)有一根無彈性的細線恰好能沿足球的大圓緊緊纏繞一周,將細線的長度增加1米后,細線仍以圓形呈現(xiàn),且圓心為足球的球心,若將細線與足球表面的間隙記為h1(間隙如圖所示),求h1的長;(π取3.14,結(jié)果精確到1cm)
探究2:將探究1中的足球分別換成乒乓球和地球,其他條件都不改變,設(shè)乒乓球的半徑為r,細線與乒乓球表面的間隙為h2;地球的半徑為R,細線與地球表面的間隙為h3,試比較h2與h3的大小,并說明理由。

查看答案和解析>>

同步練習(xí)冊答案