【題目】如圖,在菱形ABCD中,P是對角線AC上任一點(不與A,C重合),連接BP,DP,過P作PE∥CD交AD于E,過P作PF∥AD交CD于F,連接EF.
(1)求證:△ABP≌△ADP;
(2)若BP=EF,求證:四邊形EPFD是矩形.
【答案】
(1)證明:∵點P是菱形ABCD對角線AC上的一點,
∴∠DAP=∠PAB,AD=AB,
∵在△APB和△APD中, ,
∴△ABP≌△ADP(SAS)
(2)證明:∵PE∥CD,PF∥AD,
∴四邊形EPFD是平行四邊形,
由(1)得:△ABP≌△ADP,
∴BP=DP,
又∵BP=EF,
∴DP=EF,
∴四邊形EPFD是矩形
【解析】(1)根據(jù)菱形的性質(zhì)得出∠DAP=∠PAB,AD=AB,再利用全等三角形的判定得出△ABP≌△ADP即可;(2)先證明四邊形EPFD是平行四邊形,再由全等三角形的性質(zhì)得出BP=DP,由已知證出DP=EF,即可得出結(jié)論.
【考點精析】通過靈活運用菱形的性質(zhì)和矩形的判定方法,掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半;有一個角是直角的平行四邊形叫做矩形;有三個角是直角的四邊形是矩形;兩條對角線相等的平行四邊形是矩形即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1)、B(4,2)、C(3,4)
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形△A1B1C1 , 直接寫出點A1的坐標;
(2)請畫出△ABC繞原點O順時針旋轉(zhuǎn)90°的圖形△A2B2C2 , 直接寫出點A2的坐標;
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列關系中,兩個量之間為反比例函數(shù)關系的是( 。
A.正方形的面積S與邊長a的關系
B.正方形的周長l與邊長a的關系
C.矩形的長為a , 寬為20,其面積S與a的關系
D.矩形的面積為40,長a與寬b之間的關系
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線 交 軸于 兩點,交 軸于點 , .
(Ⅰ)求拋物線的解析式;
(Ⅱ)若 是拋物線的第一象限圖象上一點,設點 的橫坐標為m,
點 在線段 上,CD=m,當 是以 為底邊的等腰三角形時,求點 的坐標;
(Ⅲ)在(Ⅱ)的條件下,是否存在拋物線上一點 ,使 ,若存在,求出點 的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,EB為半圓O的直徑,點A在EB的延長線上,AD切半圓O于點D,BC⊥AD于點C,AB=2,半圓O的半徑為2,則BC的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,P是對角線AC上任一點(不與A,C重合),連接BP,DP,過P作PE∥CD交AD于E,過P作PF∥AD交CD于F,連接EF.
(1)求證:△ABP≌△ADP;
(2)若BP=EF,求證:四邊形EPFD是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點分別為A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).
(1)把△ABC向上平移3個單位后得到△A1B1C1 , 請畫出△A1B1C1并寫出點B1的坐標;
(2)已知點A與點A2(2,1)關于直線l成軸對稱,請畫出直線l及△ABC關于直線l對稱的△A2B2C2 , 并直接寫出直線l的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸交于點A、點B(點A在點B左側(cè)),與y軸交于點C,點D為拋物線的頂點,已知點A、點B的坐標分別為A(﹣1,0)、B(3,0).
(1)求拋物線的解析式;
(2)在直線BC上方的拋物線上找一點P,使△PBC的面積最大,求P點的坐標;
(3)如圖2,連接BD、CD,拋物線的對稱軸與x軸交于點E,過拋物線上一點M作MN⊥CD,交直線CD于點N,求當∠CMN=∠BDE時點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com