【題目】從今年起,我市生物和地理會考實施改革,考試結(jié)果以等級形式呈現(xiàn),分A、B、C、D四個等級.某校八年級為了迎接會考,進(jìn)行了一次模擬考試,隨機抽取部分學(xué)生的生物成績進(jìn)行統(tǒng)計,繪制成如下兩幅不完整的統(tǒng)計圖.
(1)這次抽樣調(diào)查共抽取了名學(xué)生的生物成績.扇形統(tǒng)計圖中,D等級所對應(yīng)的扇形圓心角度數(shù)為°;
(2)將條形統(tǒng)計圖補充完整;
(3)如果該校八年級共有600名學(xué)生,請估計這次模擬考試有多少名學(xué)生的生物成績等級為D?
【答案】
(1)50;36
(2)
解:50﹣15﹣22﹣8=5(名),
如圖所示:
(3)
解:600× =60(名).
答:這次模擬考試有60名學(xué)生的生物成績等級為D
【解析】解:(1)15÷30%=50(名),
50﹣15﹣22﹣8=5(名),
360°× =36°.
答:這次抽樣調(diào)查共抽取了50名學(xué)生的生物成績.扇形統(tǒng)計圖中,D等級所對應(yīng)的扇形圓心角度數(shù)為36°.
所以答案是:50,36;
【考點精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計圖的理解,了解能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校準(zhǔn)備從甲、乙、丙、丁四個科創(chuàng)小組中選出一組代表學(xué)校參加青少年科技創(chuàng)新大賽,各組的平時成績的平均數(shù) (單位:分)及方差s2如表所示:
甲 | 乙 | 丙 | 丁 | |
7 | 8 | 8 | 7 | |
s2 | 1 | 1.2 | 1 | 1.8 |
如果要選出一個成績較好且狀態(tài)穩(wěn)定的組去參賽,那么應(yīng)選的組是( 。
A.甲
B.乙
C.丙
D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l:y=x+2交x軸于點A,交y軸于點A1 , 點A2 , A3 , …在直線l上,點B1 , B2 , B3 , …在x軸的正半軸上,若△A1OB1 , △A2B1B2 , △A3B2B3 , …,依次均為等腰直角三角形,直角頂點都在x軸上,則第n個等腰直角三角形AnBn﹣1Bn頂點Bn的橫坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電商銷售一款夏季時裝,進(jìn)價40元/件,售價110元/件,每天銷售20件,每銷售一件需繳納電商平臺推廣費用a元(a>0).未來30天,這款時裝將開展“每天降價1元”的夏令促銷活動,即從第1天起每天的單價均比前一天降1元.通過市場調(diào)研發(fā)現(xiàn),該時裝單價每降1元,每天銷量增加4件.在這30天內(nèi),要使每天繳納電商平臺推廣費用后的利潤隨天數(shù)t(t為正整數(shù))的增大而增大,a的取值范圍應(yīng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,以△ABC的邊AB為直徑的⊙O交邊BC于點E,過點E作⊙O的切線交AC于點D,且ED⊥AC.
(1)試判斷△ABC的形狀,并說明理由;
(2)如圖2,若線段AB、DE的延長線交于點F,∠C=75°,CD=2﹣ ,求⊙O的半徑和BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將正方形紙片ABCD對折,使AB與CD重合,折痕為EF.如圖2,展開后再折疊一次,使點C與點E重合,折痕為GH,點B的對應(yīng)點為點M,EM交AB于N.若AD=2,則MN= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=150°,AC=4,tanB= .
(1)求BC的長;
(2)利用此圖形求tan15°的值(精確到0.1,參考數(shù)據(jù): =1.4, =1.7, =2.2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點E在CD上,將△BCE沿BE折疊,點C恰落在邊AD上的點F處;點G在AF上,將△ABG沿BG折疊,點A恰落在線段BF上的點H處,有下列結(jié)論:
①∠EBG=45°;②△DEF∽△ABG;③S△ABG= S△FGH;④AG+DF=FG.
其中正確的是 . (把所有正確結(jié)論的序號都選上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,以AB上一點O為圓心,OA長為半徑的圓與BC相切于點D,分別交AC、AB于點E、F.
(1)若AC=6,AB=10,求⊙O的半徑;
(2)連接OE、ED、DF、EF.若四邊形BDEF是平行四邊形,試判斷四邊形OFDE的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com