【題目】直線y=x+b與雙曲線y=交于點(diǎn)A(﹣1,﹣5).并分別與x軸、y軸交于點(diǎn)C、B.
(1)直接寫出b= ,m= ;
(2)根據(jù)圖象直接寫出不等式x+b<的解集為 ;
(3)若點(diǎn)D在x軸的正半軸上,是否存在以點(diǎn)D、C、B構(gòu)成的三角形與△OAB相似?若存在,請(qǐng)求出D的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)-4,5;(2) x<﹣1或0<x<5;(3)存在,D的坐標(biāo)是(6,0)或(20,0).
【解析】
(1)把A的坐標(biāo)分別代入一次函數(shù)與反比例函數(shù)的解析式,即可求得b和m的值;
(2)根據(jù)圖象即可直接寫出,即反比例函數(shù)的圖象在一次函數(shù)的圖象上部的部分x的取值;
(3)求得△OAB的邊長(zhǎng),點(diǎn)D在x軸的正半軸上,可以分D在線段OC上(不在O點(diǎn))或線段OC的延長(zhǎng)線上兩種情況討論,依據(jù)相似三角形的對(duì)應(yīng)邊的比相等即可求得.
解:(1)把A(﹣1,﹣5)代入y=x+b得:﹣5=﹣1+b,解得:b=﹣4.
把A(﹣1,﹣5)代入y=,得:m=(﹣1)(﹣5)=5.
故答案是:﹣4,5;
(2)解集為:x<﹣1或0<x<5,
故答案是:x<﹣1或0<x<5;
(3)OA==,
在y=x﹣4中,令x=0,解得y=﹣4,則B的坐標(biāo)是(0,﹣4).
令y=0,解得:x=4,則C的坐標(biāo)是(4,0).
故OB=4,AB==,BC=4,OC=4.
∴OB=OC,即△OBC是等腰直角三角形,
∴∠OCB=∠OBC=45°,∠BCE=135°.
過A作AF⊥y軸于點(diǎn)F.則△ABF是等腰直角△,∠ABF=45°,∠ABO=135°.
1)當(dāng)D在線段OC(不與O重合)上時(shí),兩個(gè)三角形一定不能相似;
2)當(dāng)D在線段OC的延長(zhǎng)線上時(shí),設(shè)D的坐標(biāo)是(x,0),則CD=x﹣4,
∠ABO=∠BCD=135°,
當(dāng)△AOB∽△DBC時(shí),=,即=,
解得:x=6,
則D的坐標(biāo)是(6,0);
當(dāng)△AOB∽△BDC時(shí),,即=,
解得:x=20,
則D的坐標(biāo)是(20,0).
則D的坐標(biāo)是(6,0)或(20,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)C的坐標(biāo)為(6,0).拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、C,與AB交于點(diǎn)D.
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)P為線段BC上一個(gè)動(dòng)點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個(gè)動(dòng)點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S.
①求S關(guān)于m的函數(shù)表達(dá)式;
②當(dāng)S最大時(shí),在拋物線y=﹣x2+bx+c的對(duì)稱軸l上,若存在點(diǎn)F,使△DFQ為直角三角形,請(qǐng)直接寫出所有符合條件的點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:半徑為1的⊙O1與x軸交于A、B兩點(diǎn),圓心O1的坐標(biāo)為(2,0),二次函數(shù)y=﹣x2+bx+c的圖象經(jīng)過A、B兩點(diǎn),其頂點(diǎn)為F.
(1)求b、c的值及二次函數(shù)頂點(diǎn)F的坐標(biāo);
(2)寫出將二次函數(shù)y=﹣x2+bx+c的圖象向下平移1個(gè)單位再向左平移2個(gè)單位的圖象的函數(shù)表達(dá)式;
(3)經(jīng)過原點(diǎn)O的直線l與⊙O相切,求直線l的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉行“中國夢(mèng)校園好聲音”歌手大賽,高、初中部根據(jù)初賽成績(jī),各選出5名選手組成初中代表隊(duì)和高中代表隊(duì)參加學(xué)校決賽.兩個(gè)隊(duì)各選出的5名選手的決賽成績(jī)?nèi)鐖D所示.
(1)根據(jù)圖示填寫下表;
平均數(shù)(分) | 中位數(shù)(分) | 眾數(shù)(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)結(jié)合兩隊(duì)成績(jī)的平均數(shù)和中位數(shù),分析哪個(gè)隊(duì)的決賽成績(jī)較好;
(3)計(jì)算兩隊(duì)決賽成績(jī)的方差并判斷哪一個(gè)代表隊(duì)選手成績(jī)較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)布口袋里裝著白、紅、黑三種顏色的小球,它們除顏色之外沒有任何其它區(qū)別,其中有白球3只、紅球2只、黑球1只.袋中的球已經(jīng)攪勻.
(1)閉上眼睛隨機(jī)地從袋中取出1只球,求取出的球是黑球的概率;
(2)若取出的第1只球是紅球,將它放在桌上,閉上眼睛從袋中余下的球中再隨機(jī)地取出1只球,這時(shí)取出的球還是紅球的概率是多少?
(3)若取出一只球,將它放回袋中,閉上眼睛從袋中再隨機(jī)地取出1只球,兩次取出的球都是白球概率是多少?(用列表法或樹狀圖法計(jì)算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、AC與⊙O相切于點(diǎn)B、C,∠A=50°,P為⊙O上異于B、C的一個(gè)動(dòng)點(diǎn),則∠BPC的度數(shù)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,分別以點(diǎn)A(2,3)、點(diǎn)B(3,4)為圓心,以1、3為半徑作⊙A、⊙B,M,N分別是⊙A、⊙B上的動(dòng)點(diǎn),P為x軸上的動(dòng)點(diǎn),則PM+PN的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=x+4的圖象與二次函數(shù)y=ax(x﹣2)的圖象相交于A(﹣1,b)和B,點(diǎn)P是線段AB上的動(dòng)點(diǎn)(不與A、B重合),過點(diǎn)P作PC⊥x軸,與二次函數(shù)y=ax(x﹣2)的圖象交于點(diǎn)C.
(1)求a、b的值
(2)求線段PC長(zhǎng)的最大值;
(3)若△PAC為直角三角形,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系 xOy中,直線ykxb與 x軸相交于點(diǎn)A,與反比例函數(shù)在第一象限內(nèi)的圖像相交于點(diǎn) A(1,8)、B(m,2).
(1)求該反比例函數(shù)和直線y kxb的表達(dá)式;
(2)求證:ΔOBC為直角三角形;
(3)設(shè)∠ACO=α,點(diǎn)Q為反比例函數(shù)在第一象限內(nèi)的圖像上一動(dòng)點(diǎn),且滿足90°-α<∠QOC<α,求點(diǎn)Q的橫坐標(biāo)q的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com