精英家教網(wǎng)如圖,C為線段AE上一動點(不與點A、E重合).在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于H,AD與BC交于P,BE與CD交于Q,連接PQ、CH.給出以下五個結(jié)論:①AD=BE,②PQ∥AE,③AP=BQ,④DE=DP,⑤∠AHB=60°,⑥HC平分∠AHE,⑦△CDP≌△CEQ.其中正確結(jié)論的個數(shù)是(  )
A、4個B、5個C、6個D、7個
分析:證明①可先證明△ACD≌△BCE,已有:AB=BC,CD=CE,易得∠ACD=∠BCE,其他的證明需要通過①得到,再利用三角形相似以及等邊三角形的知識分別進行證明即可得出答案.
解答:解:①∵△ABC和△CDE為等邊三角形
∴AC=BC,CD=CE,∠BCA=∠DCB=60°
∴∠ACD=∠BCE
∴△ACD≌△BCE
∴AD=BE,故①正確;
由(1)中的全等得∠CBE=∠DAC,進而可求證△CQB≌△CPA,精英家教網(wǎng)
∴AP=BQ,故③正確;
又∵∠PCQ=60°可知△PCQ為等邊三角形,
∴∠PQC=∠DCE=60°,
∴PQ∥AE②成立,
∵∠QCP=60°,∠DPC=∠BCA+∠PAC>60°,
∴PD≠CD,
∴DE≠DP,故④DE=DP錯誤;
∵等邊△ABC、等邊△DCE,
∴∠ACB=∠CED,即BC∥DE,
同理可證AB∥CD,
即可得△BAE∽△QCE,△APC∽△ADE,
PC
DE
=
AC
AE
CQ
AB
=
CE
AE
,
∵BA=CA,DE=CE,
∴CQ=CP,
又∵∠PCQ=180°-∠ACB-∠ECD=60°,
∴△PCQ為等邊三角形,
∵PC=CQ,CD=CE,∠PCD=∠QCE,
∴△CDP≌△CEQ.故⑦△CDP≌△CEQ,正確;
∵BC∥DE,
∴∠CBE=∠BED,
∵∠CBE=∠DAE,
∴∠AHB=∠HAE+∠AEH=60°,故⑤正確;
同理可得出∠AHE=120°,∠HAC=∠HCD,
∴∠DCE=∠AHC=60°,
∴HC平分∠AHE,故⑥正確,
故正確的有①②③⑤⑥⑦共6個,
故選:C.
點評:此題主要考查了等邊三角形的性質(zhì)及三角形全的判定與性質(zhì)以及相似三角形的判定與性質(zhì);熟練應(yīng)用三角形全等的證明是正確解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

24、如圖,C為線段AE上一動點,(不與A,E重合),在AE同側(cè)分別作等邊三角形ABC和CDE.則以下結(jié)論:①AD=BE  ②CP=CQ  ③AP=BQ   ④DE=DP  ⑤PQ∥AE中正確的有
①②③⑤
.并證明其中的一個結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

10、如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP; ⑤∠AOB=60°.其中正確的結(jié)論的個數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖,C為線段AE上一動點(不與A、E重合),在AE同側(cè)分別作正三角形ABC和正三角形CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ,以下五個結(jié)論:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°其中完全正確的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AE上一動點(不與點A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BC相交于點P,BE與CD相交于點Q,連接PQ.
求證:△PCQ為等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,C為線段AE上一動點(不與A,E重合)在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE相交于點O,AD與BC相交于點P,BE與CD相交于點Q,連接PQ.請你寫出三個正確的結(jié)論:
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°
△ACD≌△BCE,∠DAC=∠EBC,∠BCD=60°

查看答案和解析>>

同步練習冊答案