17、如圖,△ABC中,D、E分別是AC、AB上的點,BD與CE交于點O.給出下列三個條件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三個條件中,哪兩個條件可判定
△ABC是等腰三角形(用序號寫出一種情形):
①③
分析:根據(jù)已知條件求證△EBO≌△DCO,然后可得∠OBC=∠OCB再利用兩角相等即可判定△ABC是等腰三角形.此題答案不唯一.
解答:答:由①③條件可判定△ABC是等腰三角形.
證明:∵∠EBO=∠DCO,∠EOB=∠DOC,(對頂角相等)
BE=CD,
∴△EBO≌△DCO,
∴OB=OC,
∴∠OBC=∠OCB,
∴∠ABC=∠ACB,
∴△ABC是等腰三角形.
點評:此題主要考查學(xué)生對等腰三角形的判定和全等三角形的判定與性質(zhì)的理解和掌握,難度不大,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、已知:如圖,△ABC中,點D在AC的延長線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫∠DAC的平分線AE交BC于點E,則AE與BC有什么位置關(guān)系,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案