精英家教網 > 初中數學 > 題目詳情
精英家教網二次函數y=ax2+bx+c的圖象如圖所示,下列式子中①abc<0,②9a+3b+c=0,③2a+b=0,④b2-4ac<0,⑤4a-2b+c>0,正確的是( 。
A、①④B、①②③④⑤C、②③④⑤D、②③⑤
分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據對稱軸及拋物線與x軸交點情況進行推理,進而對所得結論進行判斷.
解答:解:①由拋物線的開口向上知a>0,與y軸的交點為在y軸的正負軸上,
∴c<0,
∵對稱軸為x=-
b
2a
=1,得2a=-b>0,
∴b<0,
∴abc>0;
故本選項錯誤;
②根據圖象知,對稱軸是x=1,當x=-1時,y=0,
∴由拋物線的對稱性知,當x=3時,y=0,即9a+3b+c=0;
故本選項正確;
③對稱軸為x=-
b
2a
=1,得2a=-b,
∴2a+b=0;
故本選項正確;
④∵本函數與x軸有兩個不同的交點,
∴根的判別式△=b2-4ac>0;
故本選項錯誤;
⑤根據圖象知,當x=-2時,y>0,即4a-2b+c>0;
故本選項正確.
綜上所述,以上結論正確的是②③⑤.
故選D.
點評:主要考查圖象與二次函數系數之間的關系,二次函數與方程之間的轉換,根的判別式的熟練運用.會利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a-b+c,然后根據圖象判斷其值.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點,與y軸交于精英家教網點C(0,
3
)
,當x=-4和x=2時,二次函數y=ax2+bx+c(a≠0)的函數值y相等,連接AC、BC.
(1)求實數a,b,c的值;
(2)若點M、N同時從B點出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運動,其中一個點到達終點時,另一點也隨之停止運動,當運動時間為t秒時,連接MN,將△BMN沿MN翻折,B點恰好落在AC邊上的P處,求t的值及點P的坐標;
(3)在(2)的條件下,拋物線的對稱軸上是否存在點Q,使得以B,N,Q為頂點的三角形與△ABC相似?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

二次函數y=ax2+bx+c,當x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數學 來源: 題型:

如果二次函數y=ax2+bx+c的圖象的頂點坐標是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點,PQ:QR=1:3,求這個二次函數解析式.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖為二次函數y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當-1<x<3時,y>0.其中正確結論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•孝感)二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習冊答案