如圖,已知反比例函數(shù)(m是常數(shù),m≠0),一次函數(shù)y=ax+b(a、b為常數(shù),a≠0),其中一次函數(shù)與x軸,y軸的交點分別是A(-4,0),B(0,2).
(1)求一次函數(shù)的關(guān)系式;
(2)反比例函數(shù)圖象上有一點P滿足:①PA⊥x軸;②PO=(O為坐標(biāo)原點),求反比例函數(shù)的關(guān)系式;
(3)求點P關(guān)于原點的對稱點Q的坐標(biāo),判斷點Q是否在該反比例函數(shù)的圖象上.
(1);(2);(3)在,理由見解析.
【解析】
試題分析:(1)用待定系數(shù)法即可得出一次函數(shù)的解析式;
(2)先求出P點的坐標(biāo),然后用待定系數(shù)法即可求出反比例函數(shù)解析式;
(3)先求出P關(guān)于原點對稱的點Q的坐標(biāo),然后代入反比例函數(shù)驗證即可.
試題解析:(1)∵一次函數(shù)y=ax+b與x軸,y軸的交點分別是A(﹣4,0),B(0,2),
∴,解得.
∴一次函數(shù)的關(guān)系式為:.
(2)設(shè)P(﹣4,p),則,解得:p =±1.
由題意知p =﹣1,p =1舍去.
把P(﹣4,﹣1)代入反比例函數(shù),得.
∴反比例函數(shù)的關(guān)系式為:.
(3)∵P(﹣4,﹣1),∴關(guān)于原點的對稱點Q的坐標(biāo)為Q(4,1).
∵把Q(4,1)代入反比例函數(shù)關(guān)系式成立,
∴Q在該反比例函數(shù)的圖象上.
考點:1.反比例函數(shù)綜合題;2.待定系數(shù)法;3.曲線上點的坐標(biāo)與方程的關(guān)系;4.關(guān)于原點的對稱點的特征.
科目:初中數(shù)學(xué) 來源: 題型:
m |
x |
4 |
5 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
k |
x |
k |
x |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com