【題目】如圖,在△ABC中,∠ABC的平分線BF與△ABC的外角平分線CF相交于點(diǎn)F,過F作DF∥BC,交AB于D,交AC于E。
(1)寫出圖中所有的等腰三角形,并選擇其中一個說明理由。
(2)直接寫出BD,CE,DE之間的數(shù)量關(guān)系。
(3)若DE=5cm,CE=8cm,BF=24cm,求△BDF的面積。
【答案】(1)詳見解析;(2)BD=DE+CE;(3)60.
【解析】試題分析:(1)根據(jù)已知條件,BF、CF分別平分∠ABC、∠ACB的外角,且DE∥BC,可得∴∠DBF=∠DFB,∠ECF=∠EFC,因此可判斷出△BDF和△CEF為等腰三角形;
(2)由(1)可得出DF=BD,CE=EF,所以得BD-CE=DE;
(3)作BF邊上的高,由勾股定理得到高為5,計算得到△BDF的面積為60.
試題解析:(1)△DBF、△ECF
以說明△DBF為例:
∵BF平分∠ABC
∴∠DBF=∠CBF
∵DF∥BC
∴∠CBF=∠DFB
∴∠DBF=∠DFB,
即△DBF為等腰三角形;
(2)存在:BDCE=DE,
證明:∵DF=BD,CE=EF,
∴BDCE=FDEF=DE.
(3)作DM⊥BF與點(diǎn)M,
由(1)知△DBF為等腰三角形,
∴BM=BF=12cm,
由(2)知BD=DE+EC=5+8=13cm,
由勾股定理,得DM==5cm,
S△BDF=×BF×DM=×24×5= 60(cm2)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中, 是邊上的點(diǎn),將繞點(diǎn)旋轉(zhuǎn),得到.
(1)當(dāng)時,求證: .
(2)在(1)的條件下,猜想, , 有怎樣的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)是內(nèi)任意一點(diǎn),=5 cm,點(diǎn)和點(diǎn)分別是射線和射線上的動點(diǎn),的最小值是5 cm,則的度數(shù)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一塊直角三角板DEF放置在△ABC上,三角板DEF的兩條直角邊DE、DF恰好分別經(jīng)過點(diǎn)B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,圖中的小方格都是邊長為1的正方形,△ABC與△A'B'C'是以點(diǎn)O為位似中心的位似圖形,它們的頂點(diǎn)都在小正方形的頂點(diǎn)上.
(1)畫出位似中心點(diǎn)O;
(2)直接寫出△ABC與△A′B'C'的位似比;
(3)以位似中心O為坐標(biāo)原點(diǎn),以格線所在直線為坐標(biāo)軸建立平面直角坐標(biāo)系,畫出△A'B'C'關(guān)于點(diǎn) O中心對稱的△A″B″C″,并直接寫出△A″B″C″各頂點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,已知AB是⊙O直徑,BC是⊙O的弦,弦ED⊥AB于點(diǎn)F,交BC于點(diǎn)G,過點(diǎn)C作⊙O的切線與ED的延長線交于點(diǎn)P.
(1)求證:PC=PG;
(2)點(diǎn)C在劣弧AD上運(yùn)動時,其他條件不變,若點(diǎn)G是BC的中點(diǎn),試探究CG、BF、BO三者之間的數(shù)量關(guān)系,并寫出證明過程;
(3)在滿足(2)的條件下,已知⊙O的半徑為5,若點(diǎn)O到BC的距離為時,求弦ED的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC的平分線BP交與點(diǎn)P,若∠CAP=50°,則∠BPC的度是( )
A. 80° B. 60° C. 50° D. 40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com