【題目】已知點P(x0 , y0)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d= 計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d= = = = .
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標(biāo)為(0,5),半徑r為2,判斷⊙Q與直線y= x+9的位置關(guān)系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.
【答案】
(1)
解:因為直線y=x﹣1,其中k=1,b=﹣1,
所以點P(1,﹣1)到直線y=x﹣1的距離為:d= = = =
(2)
解:⊙Q與直線y= x+9的位置關(guān)系為相切.
理由如下:
圓心Q(0,5)到直線y= x+9的距離為:d= = =2,
而⊙O的半徑r為2,即d=r,
所以⊙Q與直線y= x+9相切
(3)
解:當(dāng)x=0時,y=﹣2x+4=4,即點(0,4)在直線y=﹣2x+4,
因為點(0,4)到直線y=﹣2x﹣6的距離為:d= = =2 ,
因為直線y=﹣2x+4與y=﹣2x﹣6平行,
所以這兩條直線之間的距離為2
【解析】(1)根據(jù)點P到直線y=kx+b的距離公式直接計算即可;(2)先利用點到直線的距離公式計算出圓心Q到直線y= x+9,然后根據(jù)切線的判定方法可判斷⊙Q與直線y= x+9相切;(3)利用兩平行線間的距離定義,在直線y=﹣2x+4上任意取一點,然后計算這個點到直線y=﹣2x﹣6的距離即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,任意四邊形ABCD中,E,F(xiàn),G,H分別是AB,BC,CD,DA上的點,對于四邊形EFGH的形狀,某班學(xué)生在一次數(shù)學(xué)活動課中,通過動手實踐,探索出如下結(jié)論,其中錯誤的是( )
A.當(dāng)E,F(xiàn),G,H是各邊中點,且AC=BD時,四邊形EFGH為菱形
B.當(dāng)E,F(xiàn),G,H是各邊中點,且AC⊥BD時,四邊形EFGH為矩形
C.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH可以為平行四邊形
D.當(dāng)E,F(xiàn),G,H不是各邊中點時,四邊形EFGH不可能為菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A.B是雙曲線y= 上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若△ADO的面積為1,D為OB的中點,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O交△ABC的BC、AC邊與D、E兩點,在圖中僅以沒有刻度的直尺畫出三角形的三條高(簡單敘述你的畫法).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)y=2x+b(b為常數(shù))的圖象位于x軸下方的部分沿x軸翻折至其上方后,所得的折線是函數(shù)y=|2x+b|(b為常數(shù))的圖象.若該圖象在直線y=2下方的點的橫坐標(biāo)x滿足0<x<3,則b的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A(a,b)為第一象限內(nèi)一點,且a<b.連結(jié)OA,并以點A為旋轉(zhuǎn)中心把OA逆時針轉(zhuǎn)90°后得線段BA.若點A、B恰好都在同一反比例函數(shù)的圖象上,則 的值等于
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,Rt△ABC的頂點A,C分別在y軸,x軸上,∠ACB=90°,OA= ,拋物線y=ax2﹣ax﹣a經(jīng)過點B(2, ),與y軸交于點D.
(1)求拋物線的表達式;
(2)點B關(guān)于直線AC的對稱點是否在拋物線上?請說明理由;
(3)延長BA交拋物線于點E,連接ED,試說明ED∥AC的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y= x﹣1與拋物線y=﹣ x2+bx+c交于A,B兩點,點A在x軸上,點B的橫坐標(biāo)為﹣8,點P是直線AB上方的拋物線上的一動點(不與點A,B重合).
(1)求該拋物線的函數(shù)關(guān)系式;
(2)連接PA、PB,在點P運動過程中,是否存在某一位置,使△PAB恰好是一個以點P為直角頂點的等腰直角三角形,若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)過P作PD∥y軸交直線AB于點D,以PD為直徑作⊙E,求⊙E在直線AB上截得的線段的最大長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲,直線PA交O于A、E兩點,PA的垂線CD切O于點C,過點A作O的直徑AB.
(1)求證:AC平分∠DAB;
(2)將直線CD向下平行移動,在將直線CD向下平行移動的過程中,如圖乙、丙,試指出與∠DAC相等的角(不要求證明).
(3)在圖甲中,若DC+DA=6,O的直徑為10,求AE的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com