【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開(kāi)學(xué),利用網(wǎng)上平臺(tái),停課不停學(xué)”,某校對(duì)初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)抽取部分學(xué)生的4月月診斷性測(cè)試成績(jī),按由高到低分為A,B,C,D四個(gè)等級(jí),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問(wèn)題:
(1)該校共抽查了 名同學(xué)的數(shù)學(xué)測(cè)試成績(jī),扇形統(tǒng)計(jì)圖中A等級(jí)所占的百分比a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校初三共有1180名同學(xué),請(qǐng)估計(jì)該校初三學(xué)生數(shù)學(xué)測(cè)試成績(jī)優(yōu)秀(測(cè)試成績(jī)B級(jí)以上為優(yōu)秀,含B級(jí))約有 名;
(4)該校老師想從兩男、兩女四位學(xué)生中隨機(jī)選擇兩位了解平時(shí)線上學(xué)習(xí)情況,請(qǐng)用列表或畫(huà)樹(shù)形圖的方法求出恰好選中一男一女的概率.
【答案】(1) 100,20%;(2)作圖見(jiàn)解析;(3) 590;(4)
【解析】
(1)根據(jù)C級(jí)的人數(shù)是40,所占的百分比,據(jù)此即可求得總?cè)藬?shù);進(jìn)而可求出扇形統(tǒng)計(jì)圖中A等級(jí)所占的百分比a的值;
(2)由(1)中的數(shù)據(jù)可求出B級(jí)的人數(shù)即可補(bǔ)全條形統(tǒng)計(jì)圖;
(3)求出A級(jí)和B級(jí)共占的百分比即可根據(jù)該校初四學(xué)生數(shù)學(xué)測(cè)試成績(jī)優(yōu)秀;
(4)畫(huà)樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),找出所選的兩人恰好是一名男生和一名女生的結(jié)果數(shù),然后利用概率公式求解.
(1)本次抽樣數(shù)學(xué)測(cè)試的學(xué)生人數(shù)是:40÷=100(名);a=×100%=20%,
故答案為:100,20%;
(2)B級(jí)的人數(shù)=100204010=30(名),補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:
(3)該校初四共有1180名同學(xué),估計(jì)該校初四學(xué)生數(shù)學(xué)測(cè)試成績(jī)優(yōu)秀人數(shù)=1180×(30%+20%)=590(名),
故答案為:590;
(4)畫(huà)樹(shù)狀圖為:
共有12種等可能的結(jié)果數(shù),其中所選的兩人恰好是一名男生和一名女生的結(jié)果數(shù)為8,
所以所選的兩人恰好是一名男生和一名女生的概率==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小東同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)y 進(jìn)行了探究,下面是他的探究過(guò)程:
(1)已知x=-3時(shí) 0;x=1 時(shí) 0,化簡(jiǎn):
①當(dāng)x<-3時(shí),y=
②當(dāng)-3≤x≤1時(shí),y=
③當(dāng)x>1時(shí),y=
(2)在平面直角坐標(biāo)系中畫(huà)出y 的圖像,根據(jù)圖像,寫(xiě)出該函數(shù)的一條性質(zhì).
(3)根據(jù)上面的探究解決,下面問(wèn)題:
已知A(a,0)是x軸上一動(dòng)點(diǎn),B(1,0),C(-3,0),則AB+AC的最小值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)解下列方程.
①根為______;
②根為______;
③根為______;
(2)根據(jù)這類方程特征,寫(xiě)出第n個(gè)方程和它的根;
(3)請(qǐng)利用(2)的結(jié)論,求關(guān)于x的方程(n為正整數(shù))的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°,得到△ADE,連接BE,則∠BED的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為Q(2,﹣1),且與y軸交于點(diǎn)C(0,3),與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)P是該拋物線上的一動(dòng)點(diǎn),從點(diǎn)C沿拋物線向點(diǎn)A運(yùn)動(dòng)(點(diǎn)P與A不重合),過(guò)點(diǎn)P作PD∥y軸,交AC于點(diǎn)D.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)當(dāng)△ADP是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
(3)在題(2)的結(jié)論下,若點(diǎn)E在x軸上,點(diǎn)F在拋物線上,問(wèn)是否存在以A、P、E、F為頂點(diǎn)的平行四邊形?若存在,求點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)解析式為y=mx2﹣2mx+m﹣,二次函數(shù)與x軸交于A、B兩點(diǎn)(B在A右側(cè)),與y軸交于C點(diǎn),二次函數(shù)頂點(diǎn)為M.已知∠OMB=90°.
①求頂點(diǎn)坐標(biāo).
②求二次函數(shù)解析式.
③N為線段BM中點(diǎn),在二次函數(shù)的對(duì)稱軸上是否存在一點(diǎn)P,使得∠PON=60°,若存在求出點(diǎn)P坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)中函數(shù)y與自變量x之間部分對(duì)應(yīng)值如下表所示,點(diǎn)在函數(shù)圖象上
x | … | 0 | 1 | 2 | 3 | … |
y | … | m | n | 3 | n | … |
則表格中的m=______;當(dāng)時(shí),和的大小關(guān)系為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,2)與(0,3)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=2.下列結(jié)論:abc<0;②9a+3b+c>0;③若點(diǎn)M(,y1),點(diǎn)N(,y2)是函數(shù)圖象上的兩點(diǎn),則y1<y2;④﹣<a<﹣.其中正確結(jié)論有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,∠B=∠DCA,AD∥BC,連結(jié)OD,AC,且OD與AC相交于點(diǎn)E.
(1)求證:CD與⊙O相切;
(2)若⊙O的半徑為4,且=,求tan∠DCA的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com