【題目】如圖:AC=AD=DE=EA=BD,∠BDC=28°∠ADB=42°,則∠BEC=___________.
【答案】19°
【解析】
試題因?yàn)?/span>∠BDC=28°∠ADB=42°,所以∠ADC=∠BDC+∠ADB=42°+28°=70°,又AC=AD,所以∠ADC=∠ACD=70°,所以∠CAD=180°-2×70°=40°,又AD=DE=EA,所以∠DAE=∠ADE=∠AED=∠60°,所以在△ACE中,∠CAE=60°+40°=100°,因?yàn)?/span>AC=EA,∠AEC=(180°-100°)÷2=40°.又因?yàn)樵?/span>△BDE中,∠BDE=60°+42°=102°,所以∠BED=(180-102)÷2=39°,所以∠BEC=∠AEC+∠BED-∠AED=40°+39°-60°=19°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,直線a經(jīng)過(guò)正方形ABCD的頂點(diǎn)A,分別過(guò)正方形的頂點(diǎn)B、D作BF⊥a于點(diǎn)F,DE⊥a于點(diǎn)E,若DE=8,BF=5,則EF的長(zhǎng)為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用直尺和圓規(guī)作一個(gè)角∠A′O′B′,等于已知角∠AOB,能得出∠A′O′B′=∠AOB的依據(jù)是( )
A.SASB.ASAC.AASD.SSS
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,使ΔABC≌ΔADC成立的條件是( )
A.AB=AD,∠B=∠DB.AB=AD,∠ACB=ACD
C.BC=DC,∠BAC=∠DACD.AB=AD,∠BAC=∠DAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,正三角形OAB的頂點(diǎn)B的坐標(biāo)為(0,2),點(diǎn)A在第一象限內(nèi),將△OAB沿直線OA的方向平移至△O′A′B′的位置,此時(shí)點(diǎn)A′的橫坐標(biāo)為3,則點(diǎn)B′的坐標(biāo)為( 。
A. (2,4) B. (2,3) C. (3,4) D. (3,3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=12cm,BC=9cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B向C點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).
①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)經(jīng)過(guò)1秒時(shí),△BPD與△CQP是否全等,請(qǐng)判斷并說(shuō)明理由;
②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD≌△CPQ?
(2)若點(diǎn)Q以②的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來(lái)運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC的三邊運(yùn)動(dòng),求經(jīng)過(guò)多長(zhǎng)時(shí)間,點(diǎn)P與點(diǎn)Q第一次在△ABC的哪條邊上會(huì)相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,直線l:y=x+m與x軸、y軸分別交于點(diǎn)A和點(diǎn)B(0,﹣1),拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)B,與直線l的另一個(gè)交點(diǎn)為C(4,n).
(1)求n的值和拋物線的解析式;
(2)點(diǎn)D在拋物線上,DE∥y軸交直線l于點(diǎn)E,點(diǎn)F在直線l上,且四邊形DFEG為矩形(如圖2),設(shè)點(diǎn)D的橫坐標(biāo)為t(0<t<4),矩形DFEG的周長(zhǎng)為p,求p與t的函數(shù)關(guān)系式以及p的最大值;
(3)將△AOB繞平面內(nèi)某點(diǎn)M旋轉(zhuǎn)90°或180°,得到△A1O1B1,點(diǎn)A、O、B的對(duì)應(yīng)點(diǎn)分別是點(diǎn)A1、O1、B1.若△A1O1B1的兩個(gè)頂點(diǎn)恰好落在拋物線上,那么我們就稱這樣的點(diǎn)為“落點(diǎn)”,請(qǐng)直接寫(xiě)出“落點(diǎn)”的個(gè)數(shù)和旋轉(zhuǎn)180°時(shí)點(diǎn)A1的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,D是AC上一點(diǎn),E是BD上一點(diǎn),∠A=∠CBD=∠DCE.
(1)求證:△ABC∽△CDE;
(2)若BD=3DE,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,方格紙中每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.
(1)畫(huà)出△A1B1C1,使它與△ABC關(guān)于直線a對(duì)稱;
(2)求出△A1B1C1的面積;
(3)在直線a上畫(huà)出點(diǎn)P,使PA+PC最小,最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com