已知關(guān)于x的一元二次方程(x﹣m)2+6x=4m﹣3有實(shí)數(shù)根.

(1)求m的取值范圍;

(2)設(shè)方程的兩實(shí)根分別為x1與x2,求代數(shù)式x1•x2﹣x12﹣x22的最大值.

(1)由(x﹣m)2+6x=4m﹣3,得x2+(6﹣2m)x+m2﹣4m+3=0,
∴△=b2﹣4ac=(6﹣2m)2﹣4×1×(m2﹣4m+3)=﹣8m+24。
∵方程有實(shí)數(shù)根,∴﹣8m+24≥0,解得 m≤3。
∴m的取值范圍是m≤3。

(2)∵方程的兩實(shí)根分別為x1與x2,由根與系數(shù)的關(guān)系,得
∴x1+x2=2m﹣6,x1·x2= m2﹣4 m+3。
∴x1•x2﹣x12﹣x22="3" x1•x2﹣(x1+x22=3(m2﹣4m+3)﹣(2m﹣6)2=﹣m2+12m﹣27
=﹣(m﹣6)2+9。
∵m≤3,且當(dāng)m<6時(shí),﹣(m﹣6)2+9的值隨m的增大而增大,
∴當(dāng)m=3時(shí),x1•x2﹣x12﹣x22的值最大,最大值為﹣(3﹣6)2+9=0。
∴x1•x2﹣x12﹣x22的最大值是0。


(1)將原方程轉(zhuǎn)化為關(guān)于x的一元二次方程,由于方程有實(shí)數(shù)根,故根的判別式大于0,據(jù)此列不等式解答即可;
(2)將x1•x2﹣x12﹣x22化為兩根之積與兩根之和的形式,將含m的代數(shù)式代入,利用二次函數(shù)的最值求解即可。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2+(2k-3)x+k2=0的兩個(gè)實(shí)數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次x2-6x+k+1=0的兩個(gè)實(shí)數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第23章《一元二次方程》中考題集(23):23.3 實(shí)踐與探索(解析版) 題型:解答題

已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關(guān)于x的一元二次2x2-(2m2-1)x-m-4=0有一個(gè)實(shí)數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習(xí)冊(cè)答案