【題目】我國為了實現(xiàn)2020年全面脫貧目標,實施“精準扶貧”戰(zhàn)略,采取異地搬遷,產業(yè)扶持等措施.貧困戶的生活條件得到改善,生活質量明顯提高.恩施州為了全面了解貧困戶對扶貧工作的滿意度情況,進行隨機抽樣調查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計圖(不完整).
根據(jù)以上信息,解答下列問題:
(1)將圖1補充完整;
(2)通過分析,估計全州2000貧困戶對扶貧工作基本滿意及以上的大約多少戶?
(3)恩施州扶貧辦從利川市甲鄉(xiāng)鎮(zhèn)3戶、乙鄉(xiāng)鎮(zhèn)2戶共5戶貧困戶中,隨機抽取兩戶進行滿意度回訪,求這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的概率.
【答案】(1) 補全圖形見解析;(2) 1900戶; (3)
【解析】
(1)先根據(jù)A的戶數(shù)除以所占百分比得到被調查的總戶數(shù),再算出C的戶數(shù)即可補全圖形;
(2)基本滿意及以上是A、B、C三種類型,三種類型的人數(shù)除以總調查人數(shù)×2000即可得到答案;
(3) 畫樹狀圖列出所有等可能結果,再根據(jù)概率公式求解可得.
解:(1)∵被調查的總戶數(shù)為60÷60%=100,
∴C類別戶數(shù)為100﹣(60+20+5)=15,
補全圖形如下:
(2)貧困戶對扶貧工作的滿意度是戶;
(3)畫樹狀圖如下:
由樹狀圖知共有20種等可能結果,其中這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的有8種結果,
所以這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的概率為 = .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,AB=4,BC=2,正方形ADEF的邊長為2,F、A、B在同一直線上,正方形ADEF向右平移到點F與B重合,點F的平移距離為x,平移過程中兩圖重疊部分的面積為y,則y與x的關系的函數(shù)圖象表示正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在等腰三角形ABC中,AB=AC=8,BC=14.如圖②,在底邊BC上取一點D,連結AD,使得∠DAC=∠ACD.如圖③,將△ACD沿著AD所在直線折疊,使得點C落在點E處,連結BE,得到四邊形ABED.則BE的長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在Rt△ABC和Rt△ABD中,∠ACB=90°,∠ABD=90°,AB=BD,BC=4,(點A、D分別在直線BC的上下兩側),點G是Rt△ABD的重心,射線BG交邊AD于點E,射線BC交邊AD于點F.
(1)求證:∠CAF=∠CBE;
(2)當點F在邊BC上,AC=1時,求BF的長;
(3)若△BGC是以BG為腰的等腰三角形,試求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABO的直角頂點O在原點,AO在y軸上,BO在x軸上,且AO=4,BO=3,△ABO繞著各頂點向x軸正方向連續(xù)翻滾(始終保持一條邊在x軸上)得到多個三角形,請問第2020個三角形的直角頂點坐標為_________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,拋物線y=ax2+bx+c經過點(1,2),(5,3),則下列說法正確的是( 。
①拋物線與y軸有交點
②若拋物線經過點(2,2),則拋物線的開口向上
③拋物線的對稱軸不可能是x=3
④若拋物線的對稱軸是x=4,則拋物線與x軸有交點
A.①②③④B.①②③C.①③④D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠BAC=60°,AD平分∠BAC交邊BC于點D,分別過D作DE∥AC交邊AB于點E,DF∥AB交邊AC于點F.
(1)如圖1,試判斷四邊形AEDF的形狀,并說明理由;
(2)如圖2,若AD=4,點H,G分別在線段AE,AF上,且EH=AG=3,連接EG交AD于點M,連接FH交EG于點N.
(i)求ENEG的值;
(ii)將線段DM繞點D順時針旋轉60°得到線段DM′,求證:H,F,M′三點在同一條直線上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點,OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com