如圖,在Rt△ABC中,∠BAC=90°,AB=AC=2,點(diǎn)D在BC上運(yùn)動(dòng)(不能到達(dá)B,C點(diǎn)),過(guò)D作∠ADE=45°,DE交AC于E.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)表達(dá)式;
(3)當(dāng)△ADE是等腰三角形時(shí),求AE的長(zhǎng).

【答案】分析:(1)求出三角形的兩個(gè)角相等便可證明兩三角形相似;
(2)利用△ABD∽△DCE,BD=x,AE=y代入比例式,便可求出y關(guān)于x的函數(shù)表達(dá)式;
(3)△ADE是等腰三角形,分三種情況討論:
①若AE=DE,知要求DE⊥AC,∵AD=,∴AE=DE=1;
②若AD=DE,由(1)條件知△ABD∽△DCE,BD=x=,BD=CE,AE=2-CE=;
③若AD=AE,則∠ADE=∠AED=45°,從而∠DAE=90°,即D點(diǎn)與B點(diǎn)重合,這與已知條件“D點(diǎn)不能到B,C點(diǎn)矛盾”,因此AD≠AE.
解答:(1)證明:由圖知和已知條件:
∵∠ADB=∠DAC+∠C=∠DAC+45°,
∴∠DEC=∠DAC+∠ADE=∠DAC+45°,
∴∠ADB=∠DEC;
又∵∠B=∠C,
∴△ABD∽△DCE.

(2)解:由△ABD∽△DCE,
,
∵AB=2,BD=x,DC=
CE=2-y代入得4-2y=?

(3)解:①若AE=DE,則DE⊥AC,
∵AD=,
∴AE=DE=1,
②若AD=DE,由(1)條件知△ABD∽△DCE,
∴△ABD≌△DCE(有一邊對(duì)應(yīng)相等的兩相似三角形全等),
∴AB=DC,
2=
x=,
BD=CE,
AE=2-CE=,
③若AD=AE,
則∠ADE=∠AED=45°,∠DAE=90°,點(diǎn)D在B處沒(méi)走,
則AD≠AE.
點(diǎn)評(píng):此題考查三角形相似條件和二次函數(shù)性質(zhì),是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過(guò)點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫(huà)出符合條件的圖形.連接EF后,寫(xiě)出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過(guò)點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案