已知⊙O1和⊙O2的半徑是一元二次方程x2-5x+6=0的兩根,若圓心距O1O2=5,則⊙O1和⊙O2的位置關(guān)系是( )
A.外離
B.外切
C.相交
D.內(nèi)切
【答案】分析:先根據(jù)一元二次方程根與系數(shù)的關(guān)系,可知圓心距=兩圓半徑之和,再根據(jù)圓與圓的位置關(guān)系即可判斷.
解答:解:∵⊙O1和⊙O2的半徑是一元二次方程x2-5x+6=0的兩根,
∴兩根之和=5=兩圓半徑之和,
又∵圓心距O1O2=5,
∴兩圓外切.
故選B.
點評:此題綜合考查一元二次方程根與系數(shù)的關(guān)系及兩圓的位置關(guān)系的判斷.
圓和圓的位置與兩圓的圓心距、半徑的數(shù)量之間的關(guān)系:
①兩圓外離?d>R+r;
②兩圓外切?d=R+r;
③兩圓相交?R-r<d<R+r(R≥r);
④兩圓內(nèi)切?d=R-r(R>r);
⑤兩圓內(nèi)含?d<R-r(R>r).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

6、已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=6cm,那么⊙O1和⊙O2的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知⊙O1和⊙O2的半徑分別為R、r,連接O1O2交⊙O1于點M、交⊙O2于點N.將一個直角三角尺的直角頂點C放在直線O1O2的上方,讓兩個直角邊所在的直線分別經(jīng)過點M、N,CM交⊙O1于點A,CN交⊙O2于點B.
(1)求證:O1A∥O2B;
(2)直線AB和直線O1O2能否平行?若能夠,試指出什么條件下,AB∥O1O2;若不能,試說明理由.
(3)是否存在一點C,使CM•CA=CN•CB?若存在,請說明如何確定點C的位置,并證明你的結(jié)論;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、已知⊙O1和⊙O2的半徑分別為3cm和5cm,兩圓的圓心距是6cm,則兩圓的位置關(guān)系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、已知⊙O1和⊙O2的半徑分別為2cm和4cm,當圓心距O1O2的長度在
0≤O1O2<2或O1O2>6
范圍內(nèi)取值時,兩圓無公共點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2的半徑分別為3cm和4cm,圓心距O1O2=6cm,那么⊙O1和⊙O2的位置關(guān)系是
相交
相交

查看答案和解析>>

同步練習冊答案