如圖,已知△ABC,以BC為直徑,O為圓心的半圓交AC于點(diǎn)F,點(diǎn)E為
CF
的中點(diǎn),連接BE交AC于點(diǎn)M,AD為△ABC的角平分線,且AD⊥BE,垂足為點(diǎn)H.
(1)求證:AB是半圓O的切線;
(2)若AB=3,BC=4,求BE的長(zhǎng).
(1)證明:連接EC,
∵AD⊥BE于H,∠1=∠2,
∴∠3=∠4(1分)
∵∠4=∠5,
∴∠4=∠5=∠3,(2分)
又∵E為
CF
的中點(diǎn),
EF
=
CE
,
∴∠6=∠7,(3分),
∵BC是直徑,
∴∠E=90°,
∴∠5+∠6=90°,
又∵∠AHM=∠E=90°,
∴ADCE,
∴∠2=∠6=∠1,
∴∠3+∠7=90°,
又∵BC是直徑,
∴AB是半圓O的切線;(4分)

(2)∵AB=3,BC=4,
由(1)知,∠ABC=90°,
∴AC=
AB2+BC2
=
32+42
=5(5分)
在△ABM中,AD⊥BM于H,AD平分∠BAC,
∴AM=AB=3,
∴CM=2(6分)
∵∠6=∠7,∠E為公共角,
∴△CME△BCE,得
EC
EB
=
MC
CB
=
2
4
=
1
2
,(7分)
∴EB=2EC,在Rt△BCE中,BE2+CE2=BC2,
即BE2+(
BE
2
2=42,
解得BE=
8
5
5
.(8分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)點(diǎn)到一個(gè)圓的最短距離是3cm,最長(zhǎng)距離是6cm,則這個(gè)圓的半徑是( 。
A.4.5cmB.1.5cm
C.4.5cm或1.5cmD.9cm或3cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知等腰△ABC,AC=BC=10,AB=12,以BC為直徑作⊙O交AB點(diǎn)D,交AC于點(diǎn)G,DF⊥AC,垂足為F,交CB的延長(zhǎng)線于點(diǎn)E.
(1)求證:直線EF是⊙O的切線;
(2)求sin∠A的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,OA、OB是⊙O的兩條半徑,且OA⊥OB,點(diǎn)C是OB延長(zhǎng)線上任意一點(diǎn),過(guò)點(diǎn)C作CD切⊙O于點(diǎn)D,連接AD交OC于點(diǎn)E,猜想:△DCE是怎樣的三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AM和BN是⊙O的兩條切線,E是⊙O上一點(diǎn),D是AM上一點(diǎn),連接DE并延長(zhǎng)交BN于點(diǎn)C,且ODBE,OFBN.
(1)求證:DE與⊙O相切;
(2)求證:OF=
1
2
CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,Rt△ABC,∠ACB=90°,點(diǎn)E是邊BC上一點(diǎn),過(guò)點(diǎn)E作FE⊥BC(垂足為E)交AB于點(diǎn)F,且EF=AF,以點(diǎn)E為圓心,EC長(zhǎng)為半徑作⊙E交BC于點(diǎn)D.
(1)求證:斜邊AB是⊙E的切線;
(2)設(shè)若AB與⊙E相切的切點(diǎn)為G,AC=8,EF=5,連DA、DG,求S△ADG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C為圓心,R為半徑所作的圓與斜邊AB有兩個(gè)交點(diǎn),則R的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,BD是⊙O的直徑,AB與⊙O相切于點(diǎn)B,過(guò)點(diǎn)D作OA平行線交⊙O于點(diǎn)C,AC與BD的延長(zhǎng)線相交于點(diǎn)E.
(1)試探究AE與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)已知EC=a,ED=b,AB=c,請(qǐng)你思考后,選用以上適當(dāng)?shù)臄?shù)據(jù),計(jì)算⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知PAB、PCD為⊙O的兩條割線,PA=8,AB=10,CD=7,∠P=60°,則⊙O的半徑為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案