【題目】如圖,有一個邊長不定的正方形,它的兩個相對的頂點分別在邊長為1的正六邊形一組平行的對邊上,另外兩個頂點在正六邊形內(nèi)部(包括邊界),則正方形邊長的取值范圍是 .
【答案】( )
【解析】
試題分析:因為AC為對角線,故當(dāng)AC最小時,正方形邊長此時最小.
①當(dāng) A、C都在對邊中點時(如下圖所示位置時),顯然AC取得最小值,
∵正六邊形的邊長為1,
∴AC=,
∴a2+a2=AC2=.
∴a==.
②當(dāng)正方形四個頂點都在正六邊形的邊上時,a最大(如下圖所示).
設(shè)A′(t,)時,正方形邊長最大.
∵OB′⊥OA′.
∴B′(-,t)
設(shè)直線MN解析式為:y=kx+b,M(-1,0),N(-, -)(如下圖)
∴.
∴.
∴直線MN的解析式為:y=(x+1),
將B′(-, t)代入得:t=-.
此時正方形邊長為A′B′取最大.
∴a==3-.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若兩個數(shù)絕對值之差為0,則這兩個數(shù)( )
A.相等
B.互為相反數(shù)
C.都為0
D.相等或互為相反數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC的外側(cè)作直線BM,點A關(guān)于直線BM的對稱點為D,連結(jié)AD,CD,設(shè)CD交直線BM于點E.
(1)依題意補全圖1,若∠ABM=30°,求∠BCE的度數(shù);
(2)如圖2,若60°<∠ABM<90°,判斷直線BM和CD相交所成的銳角的度數(shù)是否為定值?若是,求出這個銳角的度數(shù);若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】油箱中存油20升,油從油箱中均勻流出,流速為0.2升/分,則油箱中剩余油量Q(升)與流出時間t(分鐘)的函數(shù)關(guān)系式是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由線段a,b,c組成的三角形是直角三角形的是( 。
A. a=1,b=2,c=3 B. a=2,b=3,c=4 C. a=3,b=4,c=5 D. a=4,b=5,c=6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國人工智能在2017年迎來發(fā)展的“應(yīng)用元年“,預(yù)計2020年中國人工智能核心產(chǎn)業(yè)規(guī)模超1500億元,將150000000000這個數(shù)用科學(xué)記數(shù)法表示為( )
A. 15×1010B. 1.5×1011C. 1.5×1012D. 0.15×1012
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,已知等腰直角三角形,點是斜邊上一點(不與重合),是的外接圓⊙的直徑.
(1)求證:是等腰直角三角形;
(2)若⊙的直徑為2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點F,H是BC邊的中點,連結(jié)DH與BE相交于點G.
(1)判斷AC與圖中的那條線段相等,并證明你的結(jié)論;
(2)若CE的長為 ,求BG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2015年是中國人民抗日戰(zhàn)爭暨世界反法西斯戰(zhàn)爭勝利70周年.某商家用1200元購進了一批抗戰(zhàn)主題紀念衫,上市后果然供不應(yīng)求,商家又用2800元購進了第二批這種紀念衫,所購數(shù)量是第一批購進量的2倍,但單價貴了5元.
(1)該商家購進的第一批紀念衫是多少件?
(2)若兩批紀念衫按相同的標價銷售,最后剩下20件按八折優(yōu)惠賣出,如果兩批紀念衫全部售完利潤率不低于16%(不考慮其它因素),那么每件紀念衫的標價至少是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com