【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,四邊形ABCD的四個頂點都在格點上,請按要求完成下列各題.

1)線段AB的長為__BC的長為__,CD的長為__,AD的長為__

2)連接AC,通過計算ACD的形狀是__ABC的形狀是__

【答案】(1),522;(2)等腰三角形,直角三角形

【解析】

1)利用勾股定理計算即可. 2)根據(jù)等腰三角形的定義,勾股定理的逆定理判斷即可.

解:(1)由題意AB

BC

CD

AD

故答案為5,22

2)∵AC

ACAD,

∴△ACD是等腰三角形,

AB,AC,BC5

AB2+AC225BC2,

∴∠BAC90°

∴△ABC是直角三角形,

故答案為等腰三角形,直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD的邊AB延長至點E使ABBE,連接BD,DE,ECDEBC于點O.

(1)求證:△ABD≌△BEC;

(2)若∠BOD2A求證:四邊形BECD是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,點EAD邊上一點,AEED12,連接AC、BE交于點F.SAEF1,則S四邊形CDEF_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線Ly=﹣x+2x軸、y軸分別交于A、B兩點,在y軸上有一點C(0,4),動點MA點以每秒1個單位的速度沿x軸向左移動.

1)求A、B兩點的坐標;

2)求COM的面積SM的移動時間t之間的函數(shù)關系式;

3)當t為何值時COM≌△AOB,請直接寫出此時t值和M點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《中國漢字聽寫大會》 喚醒了很多人對文字基本功的重視和對漢字文化的學習,某校組織了一次全校2000名學生參加的漢字聽寫大會海選比賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績(成績取整數(shù),總分100分)作為樣本進行整理,得到下列統(tǒng)計圖表:

抽取的200名學生海選成績分組表

組別

海選成績

A

B

C

D

E

請根據(jù)所給信息,解答下列問題

1)請把圖1中的條形統(tǒng)計圖補充完整;

2)在圖2的扇形統(tǒng)計圖中,表示組扇形的圓心角的度數(shù)為_______度;

3)規(guī)定海選成績在90分以上(包括90分)記為優(yōu)等,請估計該校參加這次海選比賽的2000名學生中成績優(yōu)等的有多少人;

4)經過統(tǒng)計發(fā)現(xiàn),在組中,有2位男生和2位女生獲得了滿分,如果從這4人中挑選2人代表學校參加比賽,請用樹狀圖或列表法求出所選兩人正好是一男一女的概率是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點AB在長方形的邊上.

1)用圓規(guī)和無刻度的直尺在長方形的內部作∠ABC=∠ABO;(保留作圖痕跡,不寫作法)

2)在(1)的條件下,若BE是∠CBD的角平分線,探索ABBE的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學共有3個一樣規(guī)模的大餐廳和2個一樣規(guī)模的小餐廳,經過測試同時開放2個大餐廳和1個小餐廳,可供3000名學生就餐;同時開放1個大餐廳,1個小餐廳,可供1700名學生就餐.

(1)請問1個大餐廳、1個小餐廳分別可供多少名學生就餐.

(2)如果3個大餐廳和2個小餐廳全部開放,那么能否供全校4500名學生就餐?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“低碳生活,綠色出行”是我們倡導的一種生活方式,有關部門抽樣調查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計圖:

1)樣本中的總人數(shù)為 ,開私家車的人數(shù) ,扇形統(tǒng)計圖中“騎自行車”所在扇形的圓心角為 度;(直接寫出答案)

2)補全條形統(tǒng)計圖;

3)該單位共有500人,積極踐行這種生活方式,越來越多的人上下班由開私家車改為騎自行車.若步行、坐公交車上下班的人數(shù)保持不變,問原來開私家車的人中至少有多少人改為騎自行車,才能使騎自行車的人數(shù)不低于開私家車的人數(shù)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 中,AB=AC, BAC 60°,將線段 AB 繞點 A逆時針旋轉 60°得到點 D, E 與點 D 關于直線 BC 對稱,連接 CD,CE,DE

1)依題意補全圖形;

2)判斷△CDE 的形狀,并證明;

3)請問在直線CE上是否存在點 P,使得 PA - PB =CD 成立?若存在,請用文字描述出點 P 的準確位置,并畫圖證明;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案