【題目】如圖,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度數(shù).
【答案】20°.
【解析】試題分析:先由平行線的性質(zhì)及∠DAC的度數(shù)算出∠ACB的度數(shù),再根據(jù)∠ACF的度數(shù)求出∠FCB的度數(shù),由CE平分∠BCF得出∠FCE=∠ECB,所以∠ECB的度數(shù)就求出來了,再由EF∥AD,AD∥BC,得出EF∥BC(平行公理推論),然后利用平行線性質(zhì)推出∠FEC=∠ECB,從而得出∠FEC的度數(shù).
試題解析:因為AD∥BC,∠DAC=120°,所以∠ACB=180°-120°=60°(兩直線平行,同旁內(nèi)角互補),又因為∠ACF=20°,所以∠BCF=60°-20°=40°,因為CE平分∠BCF,所以∠ECB=∠BCF=×40°=20°,因為EF∥AD,AD∥BC,所以EF∥BC(根據(jù)平行公理推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行),所以∠FEC=∠ECB=20°(兩直線平行,內(nèi)錯角相等).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A、B兩點坐標分別為(8,0)、(0,6),P是△AOB外接圓上的一點,且∠AOP=45°,則點P的坐標為( )
A.(8,6) B.(7,7) C.(7,7) D.(5,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點O是坐標原點,點A的坐標是(-a,a),點B的坐標是(c,b),滿足.
(1)若x=2是3x-a<0的一個解,試判斷點A在第幾象限,并說明理由;
(2)若△AOB的面積是4,求點B的坐標;
(3)若兩個動點E( e ,2e + 1) 、F( f ,-2f +3) ,請你探索是否存在以兩個動點E、F為端點的線段EF∥AB,且EF=AB.若存在,求出E、F兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)論正確的是( )
A.若a2=b2 , 則a=b
B.若a>b,則a2>b2
C.若a,b不全為零,則a2+b2>0
D.若a≠b,則a2≠b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)初三(1)班共有40名同學(xué),在一次30秒跳繩測試中他們的成績統(tǒng)計如下表:
跳繩數(shù)/個 81 85 90 93 95 98 100
人 數(shù) 1 2 8 11 5
將這些數(shù)據(jù)按組距5(個)分組,繪制成如圖的頻數(shù)分布直方圖(不完整).
(1)將表中空缺的數(shù)據(jù)填寫完整,并補全頻數(shù)分布直方圖;
(2)這個班同學(xué)這次跳繩成績的眾數(shù)是 個,中位數(shù)是 個;
(3)若跳滿90個可得滿分,學(xué)校初三年級共有720人,試估計該中學(xué)初三年級還有多少人跳繩不能得滿分.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com